Cho tam giác ABC nhọn. Lấy M đối xứng với A qua B. Trên nửa mặt phẳng chứa điểm C bờ AB kẻ tia Bx vuông góc với BC. Kẻ tia My song song với AC cắt Bx tại D. Chứng minh CB là tia phân giác của góc ACD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=căn 6^2+8^2=10cm
AM là phân giác
=>MB/AB=MC/AC
=>MB/3=MC/4=10/7
=>MB=30/7cm; MC=40/7cm
b: Xét ΔAMC và ΔNMB có
góc MAC=góc MNB
góc AMC=góc NMB
=>ΔAMC đồng dạng với ΔNMB
Bài 1:
a) Ta có: góc xDc = góc ACB ( 2 góc so le trong và Dx // BC)
Mà góc xDc = 70 độ (gt)
Nên góc ACB = 70 độ
b) Ta có:
góc BAD + góc BAC = 180 độ do 2 góc kề bù
góc BAD = 180 độ - 40 độ = 140 độ
Mà góc BAy = 1/2 góc BAD do Ay là tia phân giác của góc BAD
Nên góc BAy = 1/2 .140 độ = 70 độ (1)
Xét tam giác ABC dựa vào ĐL tổng ba góc trong tam giác ta có:
góc ABC = 180 độ - góc BAC - góc ACB = 180 độ - 40 độ - 70 độ = 70 độ (2)
Từ (1) và (2) suy ra góc BAy = góc ABC
Mà 2 góc này nằm ở vị trí so le trong
Nên Ay // BC.
Bài 2:
a) Ta có: góc ABM = góc BMN ( 2 gcó o le trong và AB // NM)
Mà góc ABM = góc xBC ( Bx là tia phân giác của góc ABC)
Nên góc xBC = góc BMN.
b) Ta có: góc MNy = góc BMN ( 2 góc so le trong và Bx // Ny)
Mà góc xBC = góc BMN ( chứng minh câu a)
Nên góc xBC = góc MNy
Mặt khác góc xBC = góc CNy ( 2 góc đồng vị và Bx // Ny)
=.> góc MNy = góc CNy
=> Ny là tia phân giác của góc MNC
Bài giải :
Bài 1:
a) Ta có: góc xDc = góc ACB ( 2 góc so le trong và Dx // BC)
Mà góc xDc = 70 độ (gt)
Nên góc ACB = 70 độ
b) Ta có:
góc BAD + góc BAC = 180 độ do 2 góc kề bù
góc BAD = 180 độ - 40 độ = 140 độ
Mà góc BAy = 1/2 góc BAD do Ay là tia phân giác của góc BAD
Nên góc BAy = 1/2 .140 độ = 70 độ (1)
Xét tam giác ABC dựa vào ĐL tổng ba góc trong tam giác ta có:
góc ABC = 180 độ - góc BAC - góc ACB = 180 độ - 40 độ - 70 độ = 70 độ (2)
Từ (1) và (2) suy ra góc BAy = góc ABC
Mà 2 góc này nằm ở vị trí so le trong
Nên Ay // BC.
Bài 2:
a) Ta có: góc ABM = góc BMN ( 2 gcó o le trong và AB // NM)
Mà góc ABM = góc xBC ( Bx là tia phân giác của góc ABC)
Nên góc xBC = góc BMN.
b) Ta có: góc MNy = góc BMN ( 2 góc so le trong và Bx // Ny)
Mà góc xBC = góc BMN ( chứng minh câu a)
Nên góc xBC = góc MNy
Mặt khác góc xBC = góc CNy ( 2 góc đồng vị và Bx // Ny)
=.> góc MNy = góc CNy
=> Ny là tia phân giác của góc MNC
a: Xét ΔAHB vuông tại H và ΔEBH vuông tại B có
BH chung
\(\widehat{HBA}=\widehat{BHE}\)
Do đó: ΔAHB=ΔEBH
b: AB=6cm
=>EH=6cm
a) Xét ΔBMN và ΔCMA có
\(\widehat{MBN}=\widehat{MCA}\)(hai góc so le trong, AC//NB)
\(\widehat{BMN}=\widehat{CMA}\)(hai góc đối đỉnh)
Do đó: ΔBMN∼ΔCMA(g-g)
b) Ta có: ΔBMN∼ΔCMA(cmt)
nên \(\dfrac{MN}{MA}=\dfrac{MB}{MC}\)(Các cặp cạnh tương ứng tỉ lệ)(1)
Xét ΔABC có AM là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{AB}{AC}=\dfrac{BM}{CM}\)(Tính chất đường phân giác của tam giác)(2)
Từ (1) và (2) suy ra \(\dfrac{AB}{AC}=\dfrac{MN}{MA}\)(đpcm)
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
Suy ra: BD=CD
b: Ta có: ΔABC cân tại A
mà AD là tia phân giác
nên AD là đường cao
mong mng giúp đỡ tui ạ !