Cho tập A={1,2,3,4,5,6}. Từ tập A, có thể lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau và bé hơn 345?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên gồm 4 chữ số là: abcd
Trường hợp 1: d=0 (1 cách)
a : 6 cách ( #0); b: 5 cách; c:4 cách => 120 cách
TH2: d#0 ( nhận 2 4 6 => 1 cách)
a: 5 cách (#0; #d); b : 4 cách; c: 3 cách => 60 cách
=> TH1 + TH2 = 200 cách
ý lộn TH2: b: 5 cách(#a; #d); c: 4 cách => 100 cách
=> Tổng cộng 220 cách
Đáp án : A
+) ; c có 4 cách chọn. Chọn chữ số còn lại có 7 cách chọn.
+) ; c có 3 cách chọn. Chọn chữ số còn lại có 7 cách chọn.
+) a = 7; ; b khác 9, b có 6 cách chọn.
+) a = 7; c = 8; b có 6 cách chọn
Vậy có 3.4.7 + 3.3.7 + 3.6 + 6 = 171 số.
Gọi số cần tìm là \(\overline{abcd}\)
TH1 : a = 6
Số cách chọn chữ số a : 1 cách
Số cách chọn chữ số b : 2 cách
Số cách chọn chữ số c,d : \(A^2_6\)
=> Số các số lập được \(1.2.A^2_6\)
TH2 : a = 7 hoặc a = 8
=> Số các số là : \(2.A^3_7\)
Vậy có tất cả : \(P=1.2.A^2_6+2.A_7^3=480\) số
Số tự nhiên có 3 chữ số có dạng \(\overline{abc}\).
TH1: \(a=3\)
Nếu \(b=4\) thì lập được 2 số tự nhiên thỏa mãn.
Nếu \(b\in\left\{1;2\right\}\), b có 2 cách chọn, c có 4 cách chọn \(\Rightarrow\) Lập được 8 số tự nhiên thỏa mãn.
TH2: \(a\in\left\{1;2\right\}\)
a có 2 cách chọn, b có 5 cách chọn, c có 4 cách chọn.
\(\Rightarrow\) Lập được \(2.5.4=40\) số tự nhiên thỏa mãn.
Vậy lập được 48 số tự nhiên thỏa mãn.