Câu 1: Cho đường thẳng d có phương trình: ax+(2a-1)y+3=0.Tìm a để đường thẳng d đi qua điểm M(1;-1). Khi đó tìm hệ số góc của đường thẳng d
Câu 2: Cho điểm M nằm ngoài đường tròn O,bán kính R.Từ M kẻ hai tiếp tuyến MA,MB với đường tròn O(AB là các tiếp điểm ). Qua A kẻ đường thẳng song song với MB cắt đường tròn (O;R) tại C. Nối MC cắt đường tròn (O;R) tại D. Tia AD cắt MB tại E. Chứng mình:
a. 4 điểm M,A,O,B cùng thuộc một đường tròn
b. EM=EB
Câu 1:
Ta có: \(ax+\left(2a-1\right)y+3=0\)
\(\Leftrightarrow\left(2a-1\right)y=-ax-3\)
\(\Leftrightarrow y=\dfrac{-ax-3}{2a-1}\)
Để (d) đi qua điểm M(1;-1) thì
Thay x=1 và y=-1 vào hàm số \(y=\dfrac{-ax-3}{2a-1}\), ta được:
\(\dfrac{-a\cdot1-3}{2a-1}=-1\)
\(\Leftrightarrow-a-3=-1\left(2a-1\right)\)
\(\Leftrightarrow-a-3=-2a+1\)
\(\Leftrightarrow-a+2a=1+3\)
hay a=4
Vậy: a=4
và hệ số góc của (d) là 4