K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2015

A B C H

Gọi tam giác đều đã cho là tam giác ABC. 

Kẻ đường cao AH . Tam giác ABC đều nên  AH là đường trung tuyến => H là trung điểm của BC => BH = BC/2 = AB/2

Áp dụng ĐL Pi ta go trong tam giác vuông ABH có: AH= AB- BH= AB- AB2/4 = 3AB2/4 => AH = \(\frac{AB\sqrt{3}}{2}\)

S(ABC) = AH.BC/2 = \(\frac{AB^2\sqrt{3}}{4}=4\sqrt{3}\) => AB= 16 => AB = 4 cm

=> Chu vi tam giác đều ABC là: AB .3 = 12 cm

+) Tổng quát : Kí hiệu a là cạnh của tam giác đều => S tam giác đều = \(\frac{a^2\sqrt{3}}{4}\) (*)

+) Chu vi lục giác đều bằng 12 cm => cạnh của lục giác đều là: 12 : 6 = 2 cm

Chia lục giác đều thành 6 tam giác đều bằng nhau có cạnh bằng cạnh của lục giác đó

Áp dụng công thức (*) => Diện tích 1 tam giác = \(\frac{4\sqrt{3}}{4}=\sqrt{3}\) cm2

Diện tích lục giác = 6 x Diện tích 1 tam giác = \(6\sqrt{3}\) cm2

ĐS:...

3 tháng 12 2015

h = 3 R =3\(\sqrt{3}\) ( vì đường cao đồng thời là trung tuyens)

mà h =\(\frac{a\sqrt{3}}{2}\)

=> a =\(\frac{6R}{\sqrt{3}}=6\)

=> S =ah/2 =.6.3.\(\sqrt{3}\)/2 = 9 \(\sqrt{3}\)

Câu này hơi căng nên để suy nghĩ!