K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2019

22 tháng 3 2017

Chọn D

Xét hàm số y =  x 2 - m x + 2 m x - 2  trên [-1;1] có: 

Bảng biến thiên

Trường hợp 1.  Khi đó

Trường hợp 2. 

Khả năng 1. 

Khi đó 

Khả năng 2  Khi đó 

 Trường hợp này vô nghiệm.

Khả năng 3.  Khi đó  Vô nghiệm.

Vậy có hai giá trị thỏa mãn là  Do đó tổng tất cả các phần tử của S là -1.

10 tháng 4 2019

Đạo hàm f'(x) =  m 2 - m + 1 ( x + 1 ) 2 > 0,  ∀ x   ∈   [ 0 ; 1 ]  

Suy ra hàm số f(x)  đồng biến trên [0; 1] nên min f(x) = f(0) = -m2+m

Theo bài ta có:

-m2+ m= -2 nên m= -1 hoặc m= 2.

Chọn D.

15 tháng 8 2018

Đáp án là D

28 tháng 12 2018

Đáp án D

6 tháng 4 2018

Điều kiện : x≠ -m.

+  Ta có:   y '   =   x 2 + 2 m x   + m 2 - 1 ( x + m ) 2 =   ( x + m ) 2 - 1 ( x + m ) 2

  y ' = 0 ↔ ( x + m ) 2   =   1   ↔   x   =   1 - m   >   - m   ∨   x   =   - 1 - m   <   - m

 

+ Do hệ số x2 là số dương và theo yêu cầu đề bài ta có bảng biến thiên như sau:

+ Hàm số đạt giá trị nhỏ nhất tại x0=1-m ∈ (0; 2) nên 0< -m+1 < 2

Hay -1< m< 1.

+ Kết hợp điều kiện để hàm số liên tục trên [0; 2] thì 

Ta được 0<m<1

Chọn A

14 tháng 11 2017

+ Đạo hàm f'(x) =  2 - m x 2 ( x + 1 ) x ( x + 1 )

f'(x) = 0  ⇒ x   =   2 m     ↔   x   =   m 2 4   ∈ [   0 ; 4 ] ,  ∀ m > 1

+ Lập bảng biến thiên, ta kết luận được  

m a x [ 0 ; 4 ]   f ( x )   =   f ( 4 m 2 )   =   m 2   + 4

+ Vậy ta cần có  m 2 + 4   <   3  

↔   m < 5   →   m > 1     m   ∈ ( 1 ; 5 )

Chọn C.

15 tháng 12 2019

+ Xét hàm số  f(x) = x3-3x+ m là hàm số liên tục trên đoạn [0; 2] .

Ta có đạo hàm f’ (x) = 3x2- 3 và f’ (x) = 0 khi x= 1 ( nhận )  hoặc x= -1( loại)

+ Suy ra GTLN và GTNN của  f(x) thuộc { f(0); f(1) ; f(2) }={m;m-2; m+2}.

+ Xét hàm số y = x 3 - 3 x + m   trên đoạn [0; 2 ] ta được giá trị lớn nhất của y  là

m a x m ; m - 2 ; m + 1 = 3 .

TH1: m= 3 thì max {1;3;5}= 5 ( loại )

TH2: 

+ Với m= -1. Ta có max {1; 3}= 3 (nhận).

+Với m= 5. Ta có max { 3;5;7}= 7 (loại).

TH3: 

+ Với m= 1. Ta có max {1; 3}= 3 (nhận).

+ Với m= -5. Ta có max {3;5;7}= 7 (loại).

Do đó m= -1 hoặc m= 1

Vậy tập hợp S  phần tử.

Chọn B.