Có bao nhiêu giá trị nguyên của x thỏa mãn biểu thức 3x+4/x+1 có giá trị nguyên?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án B
Vậy có 5 giá trị nguyên của m thỏa mãn điều kiện.
\(a,P=\frac{x+2}{x-2}+\frac{x}{x+2}-\frac{4}{x^2-4}\)
\(P=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}+\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{4}{\left(x-2\right)\left(x+2\right)}\)
\(P=\frac{x^2+4x+4+x^2-2x-4}{x^2-4}\)
\(P=\frac{2x^2+2x}{x^2-4}\)
\(P=\frac{2x^2+2x}{x^2-4}\) (1)
\(b,x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=3\left(tm\right)\end{cases}}\)
thay vào (1) ta có :
\(P=\frac{2\cdot3^2+2\cdot3}{3^2-4}=\frac{24}{5}\)
a) A = \(\dfrac{1}{x-1}-\dfrac{4}{x+1}+\dfrac{8x}{\left(x-1\right)\left(x+1\right)}\)
= \(\dfrac{x+1-4x+4+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{5x+5}{\left(x-1\right)\left(x+1\right)}=\dfrac{5}{x-1}\) => đpcm
b) \(\left|x-2\right|=3=>\left[{}\begin{matrix}x-2=3< =>x=5\left(C\right)\\x-2=-3< =>x=-1\left(L\right)\end{matrix}\right.\)
Thay x = 5 vào A, ta có:
A = \(\dfrac{5}{5-1}=\dfrac{5}{4}\)
c) Để A nguyên <=> \(5⋮x-1\)
x-1 | -5 | -1 | 1 | 5 |
x | -4(C) | 0(C) | 2(C) | 6(C) |
3n+4/n-1 thuộc Z
3n-3+7/n-1 thuộc Z
3n-3/n-1 + 7/n-1 thuộc Z
3+7/n-1 thuộc Z
7/n-1 thuộc Z
n-1 thuộc ước của 7
n-1= -7;-1;1;7
n=-6;0;2;8
Có 5 giá trị nguyên của x
Nguyễn Quốc Huy Giải ra mình mới k nha bạn!