Tìm số có 2 chữ số biết bình phương của số đó bằng lập phương tổng các chữ số của nó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo mình thì phân tích ra thành thế này
gọi số cần tìm là \(ab\) có:
\(ab=x^3;a+b=x^2\)(\(x\) là số tự nhiên mà khi lập phương lên thì bằng \(ab\), khi bình phương lên thì bằng \(a+b\))
Từ đó ta có: \(10a+b=x^3\)
\(a+b=x^2\)
Rồi suy ra được ab thì phải, mình không biết có đúng không nữa, nếu mà các bước mình làm đúng thì bạn nghiên cứu thêm nhé
(ab)^2=(a+b)^3
Từ đó suy ra (ab) phải là lập phương của 1 số, a+b là bình phương của 1 số
(ab) = 27 hoặc 64
chỉ có 27 thỏa mãn
vậy (ab)=27
Gọi số có 2 chữ số là ab. 9 ≥ a ≥ 1 , 9 ≥ b ≥ 0 , a,b thuộc N.
Theo đề ta có :
( a + b ) ³ = ( 10 a + b ) ²
< = >a + b = [ 1 + 9 a / ( a + b) ] ²
=> a + b là số chính phương và 9a chia hết cho ( a + b)
=> a + b \(\in\){ 1 ; 4 ; 9 ; 16 } và 9a chia hết cho ( a + b )
a + b = 1 => 10 a + b = 1 (loại)
a + b = 4 => 10 a + b = 8 (loại)
a + b = 9 => 10 a + b = 27 => a = 2 và b = 7 (nhận)
a + b = 16=> 10 a + b = 64 => a = 6 và b = 4 (loại)
Vậy số cần tìm là 27
Gỉa sử x và y là 2 số phải tìm và x^2 = y^3 = a. Phân tích a ra thừa số nguyên tố , ta thấy các số mũ của các thừa số nguyên tố phải chia hết cho 2 vì a = x^2 , lại phải chia hết cho 3 vì a= y^3 . Khi đó , a là lũy thừa bấc 6 của 1 số tự nhiên nào đó . Vì a lớn hơn hoặc = 100 và nhỏ hơn 10000 nên a có thể = 3^6 hoặc 4^ 6 . Nhưng 3^6= ( 3^2 )^3 ko phải là lập phương của 1 số có 2 chữ số còn 4^6 = (2^2)^6 =( 2^ 6) ^2 = 64^2 và 4^6 = 2^ 12 = ( 2^4 ) ^3 = 16^3 . Vậy 2 số phải tìm là 64 và 16.
Gọi số cần tìm là a b a , b ∈ N ; 1 ≤ a ≤ 9 ; b ≤ 9
Từ đầu bài: đặt: a b = x 3 ; a + b = x 2 x ∈ N
Vì : 10 < a b < 100 nên 10 ≤ x 3 ≤ 100 ta có 2 3 < x 3 < 5 3
Suy ra: 2 < x < 5 => x ∈ {3;4}
* Với: x = 3 => a b = 3 3 = 27
a = 2; b = 1 thỏa mãn a b 2 = a + b 3 . Vì: 27 2 = ( 2 + 7 ) 3 = 729
* Với: x = 4 => a b = 4 3 = 64
a = 6; b = 4 không thỏa mãn a b 2 = a + b 3 . Vì 64 2 ≠ ( 6 + 4 ) 3
Vậy số cần tìm là 27