chứng minh rằng 3n /3n +1 (n thuộc N) là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi UCLN của 2 số đó là d
2-3n chia hết cho d
3n-1 chia hết cho d
2-3n+3n-1 chia hết chod
1 chia hết cho d
d=1
2-3n/3n-1 tối giản
Gọi d là ƯCLN (3n;3n+1) ( d thuộc N*)
=> 3a+1-3a chia hết chi d
=> 1 chia hết cho d
mà d thuộc N* => d=1
=> \(\frac{3n}{3n+1}\)là phân số tối giản
3n và 3n +1 là 2 số TN liên tiếp nên ƯCLN(3n, 3n+1)=1------>3n/3n+1 là phân số tối giản
Ta có 3n; 3n + 1 là 2 số tự nhiên liên tiếp
\(\Rightarrow\) 3n; 3n + 1 là 2 số nguyên tố cùng nhau
\(\Rightarrow\frac{3n}{3n+1}\) là phân số tối giản
GỌI ƯCLN(3n;3n+1)=d
=>3n chia hết cho d; 3n+1chia hết cho d
=>3n+1-3n=1chia hết cho d=> d=1
=> 3n/3n+1 là phân số tối giản
Gọi ƯCLN 3n;3n+1 là d
=> 3n chia hết cho d;3n+1 chia hết cho d
=> 1chia hết cho d=> d=1
=> 3n và 3n+1 là ntố cùng nhau
=> phân số tối giản
Gọi d là ƯC(3n-2)và (4n-2)
ta có:3n-2 chia hết cho d và 4n-3 chia hết cho d
=> 4(3n-2) chia hết cho d và 3(4n-3)chia hết cho d
=>3(4n-3)-4(3n-2) chia hết cho d
<=> 1 chia hết cho d
=> d =1.Vậy phân số 3n-2/4n-3 là phân số tối giản
Gọi d=ƯCLN(3n,3n+1) Suy ra 3n chia hết cho d và 3n+1 chia hết cho d Suy ra (3n+1)-3nchia hết cho d Suy ra 3n+1-3n chia hết cho d Suy ra 1chia hết cho d,suy ra d=1,suy ra ƯCLN(3n,3n+1)=1 Suy ra 3n/3n+1 là ps tối giản Chứng tỏ 3n/3n+1(n thuộc N) là phân số tối giản
zì hai số tự nhiên liên tiếp nhau khác 0 sẽ ko cùng chia hết cho số nào lớn hơn1
tử số là số bé mà mẫu số là số lớn hơn số bé 1 đơn vị
điều này chứng tỏ hai số này là hay số tự nhiên liên tiếp
=> nó là phân số tối giản
vì 3n và 3n+1 là hai số tự nhiên liên tiếp