(Giải Bài Toán Bằng Cách Lập Phương Trình) Tìm 3 số tự nhiên liên tiếp biết tổng bình phương của chúng bằng 77
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số nhỏ hơn là x. (\(x\in N;0< x< 11\))
Do 2 số tự nhiên hơn kém nhau 1 đơn vị => Số lớn hơn là x + 1.
Do tổng 2 số là 11 nên ta có pt : x + (x + 1) = 11 <=> 2x + 1 = 11 <=> x = 5 (thỏa mãn đk).
Vậy 2 số tự nhiên cần tìm là 5 và 6.
Gọi số bé và số lớn là \(a\)và \(a+1\)\(\left(a\ge0\right)\)
Tổng hai số là 11 : \(a+a+1=11\)
\(< =>2a=10\)
\(< =>x=\frac{10}{2}=5\)
Vậy ...
Gọi số lớn là a, số bé là b(a,b thuộc tập hợp số tự nhiên)
Theo bài ra ta có:
a+b=1012
2a+b=2014
Vậy: (a+b)+(2a+b)=1012+2014
a+b+2a+b=3026
a+2a+2b=3026
a+2(a+b)=3026
a+2.1012=3026
a+2024=3026
a=3026-2024
a=1002
b=1012-1002=10
vậy số lớn là 1002
số bé là 10
Gọi số thứ nhất là x
\(\Rightarrow\)Số thứ hai là 19-x
Theo đề bài ta có phương trình:
x2+(19-x)2=185
\(\Leftrightarrow x^2+361-38x+x^2=185\)
\(\Leftrightarrow2x^2-38x+361-185=0\)
\(\Leftrightarrow2x^2-38x+176=0\)
\(\Leftrightarrow x^2-19x+88=0\)
\(\Leftrightarrow x^2-11x-8x+88=0\)
\(\Leftrightarrow x\left(x-11\right)-8\left(x-11\right)=0\)
\(\Leftrightarrow\left(x-11\right)\left(x-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-11=0\\x-8=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=11\\x=8\end{cases}}\)
Vậy số thứ nhất là 8, số thứ hai là 19-8=11 hoặc số thứ nhất là 11, số thứ hai là 19-11=8
Gọi số lớn là a , số bé là b \(\left(a>b;a,b\in N\right)\)
Tổng 2 số là : a + b = 99
Nếu lấy số lớn chia cho số nhỏ đươc thương là 2 và số dư là 18 : a = 2b + 18 => a - 2b = 18
Giải hệ: \(\hept{\begin{cases}a+b=99\\a-2b=18\end{cases}\Rightarrow\hept{\begin{cases}a=99-b\\99-b-2b=18\end{cases}\Rightarrow}\hept{\begin{cases}a=99-b\\b=27\end{cases}\Rightarrow}\hept{\begin{cases}a=72\\b=27\end{cases}}}\)
Vậy số lớn là 72 , số bé là 27
Gọi số cần tìm là ab (đk)
Theo đề bài ta có hpt:
\(\hept{\begin{cases}10a+b=a^2+b^2-11\\10a+b=2ab+5\end{cases}}\)\(\Rightarrow2ab+5=a^2+b^2-11\)
\(\Leftrightarrow a^2+b^2-2ab=16\)
\(\Leftrightarrow\left(a-b\right)^2=16\Rightarrow\orbr{\begin{cases}a-b=4\\a-b=-4\end{cases}}\)
TH1: Nếu a = b+4\(\Rightarrow10\left(b+4\right)+b=2\left(b+4\right)b+5\)
\(\Leftrightarrow3b+35-2b^2=0\)\(\Leftrightarrow\left(7+2b\right)\left(b-5\right)=0\Rightarrow b=5\Rightarrow a=9\)
TH2: Nếu a = -4+b\(\Rightarrow10\left(-4+b\right)+b=2\left(b-4\right)b+5\)
\(\Leftrightarrow-45+19b-2b^2=0\Leftrightarrow\left(b-5\right)\left(-2b+9\right)=0\)\(\Rightarrow b=5\Rightarrow a=1\)
Vậy số cần tìm là 95 và 15
Gọi số cần tìm là \(\overline{ab},2\le a\le9,0\le b\le9,a,b\inℕ\)
Theo đề: \(\hept{\begin{cases}a=b+2\\\overline{ab}=a^2+b^2+1\Leftrightarrow10a+b=a^2+b^2+1\end{cases}}\)Thay vế trên xuống vế dưới:
\(\Rightarrow10\left(b+2\right)+b=\left(b+2\right)^2+b^2+1\Leftrightarrow b=5\)(vì \(b\inℕ\)) \(\Rightarrow a=b+2=7\)
Vậy số cần tìm là 75
Gọi chữ số đơn vị là x (0 < x < 7)
Chữ số hàng chục là x + 2
Ví số cần tìm lớn hơn tổng các bình phương chữ số của nó là 1 đơn vị nên ta có phương trình :
10(x + 2) + x = (x + 2)2 + x2 + 1
Giải phương trình trên ta được x = 5 => x + 2 = 7
Số cần tìm là 75
gọi 3 số đó lần lượt là n ; n+1 ; n+2 , ta có :
n2 + ( n + 1 )2 + ( n + 2 )2 = 77 => 3n2 + 6n + 5 = 77 => 3n( n + 2) =72 => n( n +2 ) = 24
Dễ dàng giải được n = 4 ( vì n là số tự nhiên ). Vậy 3 số cần tìm là 4 ;5 ;6.
Có thể gọi 3 ssos đó là n-1 ; n ; n+1 để phương trình đơn giản hơn