K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left|46x+49\right|=\left|19x+17\right|\)

\(\Rightarrow\orbr{\begin{cases}46x+49=19x+17\\46x+49=-19x-17\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{32}{27}\\x=-\frac{66}{65}\end{cases}}}\)

\(\Rightarrow\left|x_1-x_2\right|=\left|-\frac{32}{27}-\frac{66}{65}\right|=....\)

31 tháng 12 2021

Answer:

\(\left|46x+49\right|=\left|19x+17\right|\)

\(\Rightarrow\orbr{\begin{cases}46x+49=19x+17\\46x+49=-19x-17\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-32}{27}\\x=\frac{-66}{65}\end{cases}}\)

\(\Rightarrow\left|x_1-x_2\right|=\left|\frac{-32}{27}-\left(\frac{-66}{65}\right)\right|=\frac{298}{1755}\)

30 tháng 4 2019

Phương trình ⇔ 4 x − 17 ≥ 0 x 2 − 4 x − 5 = 4 x − 17 2

⇔ x ≥ 17 4 x 2 − 5 x − 5 2 = 4 x − 17 2

⇔ x ≥ 17 4 ( x 2 − 8 x + 12 ) ( x 2 − 22 ) = 0 ⇔ x ≥ 17 4 x 2 − 8 x + 12 = 0 x 2 − 22 = 0

⇔ x ≥ 17 4 x = 2 ∨ x = 6 x = ± 22 ⇔ x = 6 x = 22 ⇒ P = 22 2 + 6 = 28

Đáp án cần chọn là: C

7 tháng 4 2022

a.\(\Delta=\left(-4\right)^2-4.2m=16-8m\)

Để pt có nghiệm x1, x2 thì \(\Delta>0\)

\(\Leftrightarrow16-8m>0\)

\(\Leftrightarrow-8m>-16\)

\(\Leftrightarrow m< 2\)

b.

Theo hệ thức Vi-ét, ta có:\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=2m\end{matrix}\right.\)

\(x_1^2+x_2^2-x_1-x_2=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2-\left(x_1+x_2\right)=16\)

\(\Leftrightarrow4^2-2.2m-4-16=0\)

\(\Leftrightarrow-4m-4=0\)

\(\Leftrightarrow m=-1\)

NV
7 tháng 4 2022

a.

Phương trình có 2 nghiệm khi:

\(\Delta'=4-2m\ge0\Rightarrow m\le2\)

b.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2m\end{matrix}\right.\)

\(x_1^2+x_2^2-x_1-x_2=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=16\)

\(\Leftrightarrow16-4m-4=16\)

\(\Leftrightarrow m=-1\) (thỏa mãn)

31 tháng 10 2017

12 tháng 8 2021

x3 - 19x - 30 = 0

<=> x3 - 5x2 + 5x2 - 25x + 6x - 30 = 0

<=> x2( x - 5 ) + 5x( x - 5 ) + 6( x - 5 ) = 0 

<=> ( x - 5 )( x2 + 5x + 6 ) = 0

<=> ( x - 5 )( x2 + 3x + 2x + 6 ) = 0

<=> ( x - 5 )[ x( x + 3 ) + 2( x + 3 ) ] = 0

<=> ( x - 5 )( x + 3 )( x + 2 ) = 0

đến đây dễ rồi :)

12 tháng 8 2021

\(x^3-19x-30=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x+2=0\\x+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=-2\\x=-3\end{cases}}}\)

Vậy B=x12+x22+x32

B=52+(-2)2+(-3)2

B=25+4+9

B=38

#H

AH
Akai Haruma
Giáo viên
13 tháng 5 2023

Đề thiếu phương trình. Bạn xem lại.

11 tháng 9 2017

Phương trình x 2 − 20x − 17 = 0 có  = 468 > 0 nên phương trình có hai nghiệm x 1 ;   x 2

Theo hệ thức Vi-ét ta có  x 1 + x 2 = − b a x 1 . x 2 = c a ⇔ x 1 + x 2 = 20 x 1 . x 2 = − 17

Ta có

C   =   x 1 3 + x 2 3   = x 1 3 +   3 x 1 2 x 2   + 3 x 1 x 2 2   +   x 2 3   −   3 x 1 2 x 2   −   3 x 1 x 2 2 = ( x 1 + x 2 ) 3 − 3 x 1 x 2 ( x 1 + x 2 )   = 2 3 – 3 . ( − 17 ) . 20   =   9020

Đáp án: D

7 tháng 5 2021

a) Đây là phương trình bậc 2 ẩn x có 

Δ = (-m)2 - 4(m-1)

   = m2-4m+4  = (m-2)2

Do (m-2)2≥0 ∀m => Δ≥0 ∀m

Vậy phương trình luôn có nghiệm với mọi m.

b) Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\left(1\right)\\x_1x_2=m-1\left(2\right)\end{matrix}\right.\)

\(x_1=2x_2\left(3\right)\)

Từ (1)(3) ta có hệ phương trình: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1=2x_2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}3x_2=m\\x_1=2x_2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x_2=\dfrac{m}{3}\\x_1=\dfrac{2m}{3}\end{matrix}\right.\)

Thay \(x_1=\dfrac{2m}{3};x_2=\dfrac{m}{3}\) vào (2) ta có:

\(\dfrac{2m}{3}.\dfrac{m}{3}=m-1\)

<=> 2m2 = 9(m - 1)

<=> 2m2 - 9m + 9 = 0

<=> (m - 3)(2m - 3) = 0

<=> \(\left[{}\begin{matrix}m-3=0\\2m-3=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}m=3\\m=\dfrac{3}{2}\end{matrix}\right.\)

Vậy tại m ∈\(\left\{3;\dfrac{3}{2}\right\}\) thì hai nghiệm của phương trình thoả mãn x1=2x2

 

7 tháng 5 2021

a) Ta có:

\(\Delta=b^2-4ac=\left(-m\right)^2-4.1.\left(m-1\right)\)

\(=m^2-4m+4=\left(m-2\right)^2\ge0\) với mọi m

Vậy phương trình đã cho luôn có nghiệm với mọi m

b) Do phương trình luôn có nghiệm với mọi m

Theo định lý Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-m\right)}{1}=m\left(1\right)\\x_1x_2=\dfrac{c}{a}=\dfrac{m-1}{1}=m-1\left(2\right)\end{matrix}\right.\)

\(x_1=2x_2\), thay vào (1) ta có:

\(2x_2+x_2=3\Leftrightarrow3x_2=m\Leftrightarrow x_2=\dfrac{m}{3}\)

\(\Rightarrow x_1=2x_2=\dfrac{2m}{3}\)

Thay \(x_1=\dfrac{2m}{3};x_2=\dfrac{m}{3}\) vào (2) ta có:

\(\dfrac{2m}{3}.\dfrac{m}{3}=m-1\)

\(\Leftrightarrow2m^2=9m-9\)

\(\Leftrightarrow2m^2-9m+9=0\)    (*)

\(\Delta_m=\left(-9\right)^2-4.2.9=9\)

Phương trình (*) có 2 nghiệm:

\(m_1=\dfrac{-\left(-9\right)+\sqrt{9}}{2.2}=3\)

\(m_2=\dfrac{-\left(-9\right)-\sqrt{9}}{2.2}=\dfrac{3}{2}\)

Vậy \(m=3;m=\dfrac{3}{2}\) thì phương trình đã cho có hai nghiệm \(x_1;x_2\) thỏa mãn \(x_1=2x_2\)

a: Thay x=-3 vào pt, ta được:

9+6m+2m+1=0

=>8m+10=0

hay m=-5/4

b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m+1\right)\)

\(=4m^2-8m-4\)

\(=4\left(m-2\right)\left(m+1\right)\)

Để phương trình có hai nghiệm thì (m-2)(m+1)>=0

=>m>=2 hoặc m<=-1

c: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2+2x_1x_2=16\)

\(\Leftrightarrow\left(2m\right)^2=16\)

=>2m=4 hoặc 2m=-4

=>m=2(nhận) hoặc m=-2(nhận)