Gọi x1, x2 là nghiệm của phương trình |46x + 49| = |19x + 17|. Tìm |x1 − x2|.
Giúp mình với cần gấp ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|46x+49\right|=\left|19x+17\right|\)
\(\Rightarrow\orbr{\begin{cases}46x+49=19x+17\\46x+49=-19x-17\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{32}{27}\\x=-\frac{66}{65}\end{cases}}}\)
\(\Rightarrow\left|x_1-x_2\right|=\left|-\frac{32}{27}-\frac{66}{65}\right|=....\)
`a)ac=-3<0`
`=>b^2-4ac>0`
`=>` phương trình luôn có hai nghiệm phân biệt với mọi m
`b)` áp dụng vi-ét:`x_1+x_2=m,x_1.x_2=-3`
`(x_1+6).(x_2+6) = 2019`
`<=>x_1.x_2+6(x_1+x_2)+36=2019`
`<=>6m-3+36=2019`
`<=>6m+33=2019`
`<=>6m=1986`
`<=>m=331`
Vậy `m=331` thì `(x_1+6).(x_2+6) = 2019`
`a)ac=-3<0`
`=>b^2-4ac>0`
`=>` phương trình luôn có hai nghiệm phân biệt với mọi m
`b)` áp dụng vi-ét:`x_1+x_2=m,x_1.x_2=-3`
`(x_1+6).(x_2+6) = 2019`
`<=>x_1.x_2+6(x_1+x_2)+36=2019`
`<=>6m-3+36=2019`
`<=>6m+33=2019`
`<=>6m=1986`
`<=>m=331`
Vậy `m=331` thì `(x_1+6).(x_2+6) = 2019`
a,ta có \(\Delta\)=\(\left(-m\right)^2-4.\left(-3\right)=m^2+12\)
vì \(m^2\ge\)0(\(\forall\)m)=>\(m^2+12\ge12=>m^2+12>0=>\Delta>0\)
vậy pt luôn có 2 nghiệm phân biệt với mọi m
b, theo vi ét=>\(\left\{{}\begin{matrix}x1+x2=m\\x1.x2=-3\end{matrix}\right.\)
có \(\left(x1+6\right).\left(x2+6\right)=2019< =>x1.x2+6x1+6x2+36-2019=0< =>-3+6\left(x1.x2\right)-1983=0< =>6m=1986< =>m=\dfrac{1986}{6}=331\)
dạ mình cám ơn ạ nma cho mình hỏi chút cái chỗ 2x1+x2=3 và x1+x2= gì v ạ
\(x^2-2\left(2m+1\right)x+4m^2+4m=0\)
Để pt có hai ng pb\(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow4>0\left(lđ\right)\)
\(\Rightarrow\)Pt luôn có hai ng pb với mọi m
\(\left\{{}\begin{matrix}x_1=\dfrac{2\left(2m+1\right)+\sqrt{4}}{2}=2m+2\\x_2=\dfrac{2\left(2m+1\right)-\sqrt{4}}{2}=2m\end{matrix}\right.\)
Có \(\left|x_1-x_2\right|=x_1+x_2\)
\(\Leftrightarrow\left|2m+2-2m\right|=2m+2+2m\)
\(\Leftrightarrow2=4m+2\)
\(\Leftrightarrow m=0\)
Vậy...
\(x^2-2\left(m-3\right)x+m^2-5m+6=0\)(1)
Để phương trình có hai nghiệm \(x_1,x_2\)thì:
\(\Delta'\ge0\Leftrightarrow\left(m-3\right)^2-\left(m^2-5m+6\right)=m^2-6m+9-\left(m^2-5m+6\right)=-m+3\ge0\)
\(\Leftrightarrow m\le3\)
Với \(m\le3\)phương trình (1) có hai nghiệm \(x_1,x_2\)nên theo định lí Viete ta có:
\(\hept{\begin{cases}x_1+x_2=2m-6\\x_1x_2=m^2-5m+6\end{cases}}\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m-3\right)^2-2\left(m^2-5m+6\right)\)
\(=2m^2-14m+24=40\)
\(\Leftrightarrow m^2-7m-8=0\)
\(\Leftrightarrow\left(m-8\right)\left(m+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=8\left(l\right)\\m=-1\left(tm\right)\end{cases}}\)
Δ=(-m)^2-4(2m-4)
=m^2-8m+16=(m-4)^2>=0
=>Phương trình luôn có hai nghiệm
|x1|+|x2|=3
=>x1^2+x2^2+2|x1x2|=9
=>m^2-2(2m-4)+2|2m-4|=9
TH1: m>=2
=>m^2=9
=>m=3(nhận) hoặc m=-3(loại)
TH2: m<2
=>m^2-4(2m-4)=9
=>m^2-8m+16-9=0
=>m=1(nhận) hoặc m=7(loại)
Answer:
\(\left|46x+49\right|=\left|19x+17\right|\)
\(\Rightarrow\orbr{\begin{cases}46x+49=19x+17\\46x+49=-19x-17\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-32}{27}\\x=\frac{-66}{65}\end{cases}}\)
\(\Rightarrow\left|x_1-x_2\right|=\left|\frac{-32}{27}-\left(\frac{-66}{65}\right)\right|=\frac{298}{1755}\)