Cho S là tổng 100 số tự nhiên liên tiếp, S' là tổng 100 số tự nhiên tiếp theo. CMR: S' - S là một số chính phương.
(Mình thấy bài này khá hay, nhiều người hỏi rồi mà không có ai trả lời)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu cần mk làm câu 2 trc :
2)
a.
Gọi số tự nhiên đầu tiên là a
=> 2 số tiếp theo là a+1 và a+2
=> Tổng của chúng là :
a + a + 1 + a + 2
= 3a + 3
= 3 ( a + 2 ) chia hết cho 3 ( đpcm )
b.
Gọi số tự nhiên đầu tiên là a
=> 3 số tiếp theo là a+1; a+2 và a+3
=> tổng của chúng là :
a + a + 1 + a + 2 + a + 3
= 4a + 6
ta có 4a chia hết cho 4 mà 6 ko chia hết cho 4
=> ko chia hết
1)
a.
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
+) Nếu a chia hết cho 3 => đpcm
+) Nếu a ko chia hết cho 3 : ( có 2 trường hợp )
TH1 : a = 3k + 1
=> a + 2 = 3k + 1 + 2
=> a + 2 = 3k + 3
=> a + 2 = 3 ( k + 1 ) chia hết cho 3
=> a + 2 chia hết cho 3 ( đpcm )
TH2 : a = 3k + 2
=> a + 1 = 3k + 2 + 1
=> a + 1 = 3k + 3
=> a + 1 = 3 ( k + 1 ) chia hết cho 3
=> a + 1 chia hết cho 3 ( đpcm )
Cmr tổng của bình phương 5 số tự nhiên liên tiếp không thể là số chính phương
ai giải được mình tick
Gọi 5 số tự nhiên liên tiếp là n - 2, n - 1, n, n + 1, n + 2 \(\left(ĐK:n\in N;n>2\right)\)
Ta có: \(\left(n-2\right)^2+\left(n-1\right)^2+n^2+\left(n+1\right)^2+\left(n+2\right)^2\)\(=\left(n^2+2\right).5\)
Vì \(n^2\)tận cùng không phải là 3 hoặc 8 nên \(n^2+2\)không chia hết cho 5
Nên \(\left(n^2+2\right).5\)không phải là số chính phương
Vậy .................................................
Gọi 5 STN liên tiếp là n-2, n-1,n,n+1,n+2
Ta có A=(n-2)2+(n-1)2+n2+(n+1)2+(n+2)2
=5n2+10=5(n2+2)
n2 ko tận cùng là 3,8
=>n2+2 ko tận cùng là 5 hoặc 0
=>n2+2 ko chia hết cho 5
=>5(n2+2) ko chia hết cho 25
=>A ko phải số chính phương.
Ta có:
1+2+3+...+2005=(2005+1).2005:2≡2006.2005:2
≡1003.2005≡3.1≡3
(mod 4)
Vậy tổng của các số từ 1 đến 2005 có dạng 4k+3 (k thuộc N) nên không là số chính phương (đpcm).