K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2016

mau lên các bạn!

1 tháng 9 2018

Nếu cần mk làm câu 2 trc :

2)

a.

Gọi số tự nhiên đầu tiên là a

=> 2 số tiếp theo là a+1 và a+2

=> Tổng của chúng là : 

a + a + 1 + a + 2

= 3a + 3

= 3 ( a + 2 ) chia hết cho 3 ( đpcm )

b.

Gọi số tự nhiên đầu tiên là a

=> 3 số tiếp theo là a+1; a+2 và a+3

=> tổng của chúng là :

a + a + 1 + a + 2 + a + 3

= 4a + 6

ta có 4a chia hết cho 4 mà 6 ko chia hết cho 4

=> ko chia hết

1 tháng 9 2018

1)

a.

Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2

+) Nếu a chia hết cho 3 => đpcm

+) Nếu a ko chia hết cho 3 : ( có 2 trường hợp )

TH1 : a = 3k + 1

=> a + 2 = 3k + 1 + 2

=> a + 2 = 3k + 3

=> a + 2 = 3 ( k + 1 ) chia hết cho 3

=> a + 2 chia hết cho 3 ( đpcm )

TH2 : a = 3k + 2

=> a + 1 = 3k + 2 + 1

=> a + 1 = 3k + 3

=> a + 1 = 3 ( k + 1 ) chia hết cho 3

=> a + 1 chia hết cho 3 ( đpcm )

4 tháng 5 2018

Gọi 5 số tự nhiên liên tiếp là n - 2, n - 1, n, n + 1, n + 2 \(\left(ĐK:n\in N;n>2\right)\)

Ta có: \(\left(n-2\right)^2+\left(n-1\right)^2+n^2+\left(n+1\right)^2+\left(n+2\right)^2\)\(=\left(n^2+2\right).5\)

Vì \(n^2\)tận cùng không phải là 3 hoặc 8 nên \(n^2+2\)không chia hết cho 5

Nên \(\left(n^2+2\right).5\)không phải là số chính phương

Vậy .................................................

4 tháng 5 2018

Gọi 5 STN liên tiếp là n-2, n-1,n,n+1,n+2

Ta có A=(n-2)2+(n-1)2+n2+(n+1)2+(n+2)2

=5n2+10=5(n2+2)

n2 ko tận cùng là 3,8 

=>n2+2 ko tận cùng là 5 hoặc 0

=>n2+2 ko chia hết cho 5

=>5(n2+2) ko chia hết cho 25

=>A ko phải số chính phương.

30 tháng 11 2017

Ta có:

1+2+3+...+2005=(2005+1).2005:2≡2006.2005:2

≡1003.2005≡3.1≡3

(mod 4)

Vậy tổng của các số từ 1 đến 2005 có dạng 4k+3 (k thuộc N) nên không là số chính phương (đpcm).

30 tháng 11 2017

ở câu hỏi tương tự đó!