K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2021

1: Xét ΔABE vuông tại B và ΔADC vuông tại D có

\(\widehat{AEB}=\widehat{ACD}\)

Do đó: ΔABE∼ΔADC

Suy ra: \(\dfrac{AB}{AD}=\dfrac{AE}{AC}\)

hay \(AB\cdot AC=AE\cdot AD\)

25 tháng 12 2021

Giải giúp em câu 2 với câu 3 đc ko ạ

Câu 2: 

Ta có: \(x^2-2\left(m+1\right)x+m^2+4=0\)

a=1; b=-2m-2; \(c=m^2+4\)

\(\text{Δ}=b^2-4ac\)

\(=\left(-2m-2\right)^2-4\cdot\left(m^2+4\right)\)

\(=4m^2+8m+4-4m^2-16\)

=8m-12

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow8m>12\)

hay \(m>\dfrac{3}{2}\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)=2m+2\\x_1x_2=m^2+4\end{matrix}\right.\)

Vì x1 là nghiệm của phương trình nên ta có: 

\(x_1^2-2\left(m+1\right)\cdot x_1+m^2+4=0\)

\(\Leftrightarrow x_1^2=2\left(m+1\right)x_1-m^2-4\)

Ta có: \(x_1^2+2\left(m+1\right)x_2=2m^2+20\)

\(\Leftrightarrow2\left(m+1\right)x_1-m^2-4+2\left(m+1\right)x_2-2m^2-20=0\)

\(\Leftrightarrow2\left(m+1\right)\left(x_1+x_2\right)-3m^2-24=0\)

\(\Leftrightarrow2\left(m+1\right)\cdot\left(2m+2\right)-3m^2-24=0\)

\(\Leftrightarrow4m^2+8m+4-3m^2-24=0\)

\(\Leftrightarrow m^2+8m-20=0\)

Đến đây bạn tự tìm m là xong rồi

23 tháng 7 2021

Cảm ơn b nha

16 tháng 8 2022

3. She said I should ask a lawyer.

4. Mrs Linh asked me to give Tuan this book.

NV
16 tháng 11 2021

Do thiết diện qua trục là hình vuông \(\Rightarrow h=2R\)

Thể tích khối trụ: \(V'=\pi R^2h=2\pi R^3\)

Độ dài cạnh hình vuông nội tiếp trong đường tròn bán kính R: \(a=R\sqrt{2}\)

\(\Rightarrow\)Thể tích khối lăng trụ tứ giác đều:

\(V=a^2.h=2R^2.2R=4R^3\)

\(\Rightarrow\dfrac{V}{V'}=\dfrac{\pi}{2}\)

\(D=10\cdot\left(-2.5\right)\cdot0.4\cdot\left(-0.1\right)\)

\(=10\cdot1\cdot2.5\cdot0.4\)

=10

3 tháng 9 2021

a) \(A=\sqrt{1-x}+\sqrt{1+x}\)

\(\Rightarrow A^2=1-x+1+x+2\sqrt{\left(1-x\right)\left(1+x\right)}=2+2\sqrt{1-x^2}\)

Do \(-x^2\le0\Rightarrow1-x^2\le1\Rightarrow A^2=2+2\sqrt{1-x^2}\le2+2=4\)

\(\Rightarrow A\le2\)

 

\(maxA=2\Leftrightarrow x=0\)

Áp dụng bất đẳng thức: \(\sqrt{x}+\sqrt{y}\ge\sqrt{x+y}\)(với \(x,y\ge0\))

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2\ge x+y\)

\(\Leftrightarrow x+y+2\sqrt{xy}\ge x+y\Leftrightarrow2\sqrt{xy}\ge0\left(đúng\right)\)

\(A=\sqrt{1-x}+\sqrt{1+x}\ge\sqrt{1-x+1+x}=\sqrt{2}\)

\(maxA=\sqrt{2}\Leftrightarrow\)\(\left[{}\begin{matrix}1-x=0\\1+x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

 

3 tháng 9 2021

Cho mình sửa dòng cuối là \(minA=\sqrt{2}\) nhé

Câu 3: 

a: \(BD=\sqrt{BC^2-DC^2}=4\left(cm\right)\)

b: \(\widehat{A}=180^0-2\cdot70^0=40^0< \widehat{B}\)

nên BC<AC=AB

c: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó:ΔEBC=ΔDCB

d: Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)

nên ΔOBC cân tại O

3 tháng 2 2023

1 bỏ so

-In order to V(inf): Để làm gì

3 -So as to V(inf): Để làm gì

6 me->her

-Could/can/Will+V(inf)

-Help+O+V/to V

11 ..... me where the nearest post office is?

-Can/could+S+V+wh-questions+S+V?

14 -Shall+S+V(inf)?

17 ........ going to help him revise his lessons

-"be" going to V(inf): Sẽ làm gì( mang tính chắc chắn)

18 -Would+S+love/like+to V/N?

19 -Let's+V(inf)

= Shall+we+V(inf)?

20 -Trong ngữ cảnh này "to V" được dùng với nghĩa "để làm gì"

*Inf: Infinitive