Cho tam giác ABC. M là trung điểm của BC, I là trung điểm của AM. Tia CI cắt AB tại D. Chứng minh:
a) AD=1/2 BD
b) ID= 1/4CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi K là trung điểm của BD
Xét ΔDBC có
K là trung điểm của BD(gt)
M là trung điểm của BC(gt)
Do đó: KM là đường trung bình của ΔDBC(Định nghĩa đường trung bình của tam giác)
⇒KM//DC và \(KM=\dfrac{DC}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay KM//DI
Xét ΔAKM có
I là trung điểm của AM(gt)
ID//KM(cmt)
Do đó: D là trung điểm của AK(Định lí 1 về đường trung bình của tam giác)
⇒AD=DK(hai cạnh tương ứng)
mà \(DK=\dfrac{BD}{2}\)(K là trung điểm của BD)
nên \(AD=\dfrac{1}{2}\cdot BD\)(đpcm)
b) Xét ΔAKM có
D là trung điểm của AK(cmt)
I là trung điểm của AM(gt)
Do đó: DI là đường trung bình của ΔAKM(Định nghĩa đường trung bình của tam giác)
⇒\(DI=\dfrac{KM}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà \(KM=\dfrac{DC}{2}\)(cmt)
nên \(DI=\dfrac{DC}{2}:2=\dfrac{1}{4}\cdot DC\)(đpcm)
bạn Nguyễn Lê Phước Thịnh ơi bạn giúp mình câu tương tự như vậy mà chứng minh không liên quan đến đường trung bình được không vì mình chưa được học đường trung bình
a: Gọi K là trung điểm của BD
Xét ΔBDC có
M là trung điểm của BC
K là trung điểm của BD
Do đó: MK là đường trung bình của ΔBDC
Suy ra: MK//DC
Xét ΔAKM có
I là trung điểm của AM
ID//MK
Do đó: D là trung điểm của AK
Suy ra: AD=DK=KB
hay AD=1/2BD
Gọi K là trung điểm của BD
a: Xét ΔBDC có
M là trung điểm của BC
K là trung điểm của BD
Do đó: MK là đường trung bình
=>MK//DC và MK=DC/2
Xét ΔAKM có
I là trung điểm của AM
ID//KM
Do đó: D là trung điểm của AK
=>AD=DK
=>AD=DK=KB
=>AD=1/2BD
b: Xét ΔAKM có
D là trung điểm của AK
I là trung điểm của AM
Do đó: DI là đường trung bình
=>DI=KM/2
=>DI=DC/4(đpcm)
mình k chắc cách này là ngắn nhưng làm đc nha bạn ,hoi dai
Ve duong thang xy qua A va // BC , CD cat xy tai N va Bi cat xy tai F
1_)-cm tam giac AIN = tam giac MIC ( g=c=g)-> AN= MC
-cm tam giac AFI= tam giac BIM ( g=c=g)==> AF=BM
ma MC=BM ( M la trung diem BC) nen AN=AF-> A la trung diem NF
2_) ta co IF= IB ( ta, giac AFI= tam giac BIM)--> OI la trung diem BF
3_) xet tam giac BNF ta co
NI la duong trung tuyen ( I la trungdiem BF)
BA la duongtrung tuyen (A la trung diem NF)
NI cat BA tai D (gt)
--> D la trong tam tam giac BNF--> AD=1/3AB
4_) \(AD=\frac{1}{3}BA->\frac{AD}{1}=\frac{BA}{3}=\frac{BA-AD}{3-1}=\frac{BD}{2}\)
--> \(\frac{AD}{1}=\frac{BD}{2}=>AD=\frac{1}{2}BD\)
( yeu cau Cong chua bang gia k copy nua nhe)
Gọi E là trung điểm BD
=> DE = EB (1)
Tam giác DBC có: E là trung điểm BD (theo cách vẽ)
M là trung điểm BC (gt)
=> EM là đường trung bình của tam giác DBC
=> EM // CD (t/c đường tb của tam giác)
Tam giác AEM có: I là trung điểm AM (gt)
DI // EM (vì EM // CD mà I thuộc CD)
=> D là trung điểm AE
=> AD = DE (2)
Từ (1),(2) => AD = DE = EB
Mà BD = DE + EB
BD = 2 DE (vì DE = EB)
=> BD= 2 AD (vì AD = DE) hay AD=1/2 BD
=> đpcm
CÁCH 2 nek!!
Từ điểm M kẻ đường thẳng Mx song song với DC cắt AB tại H
xét tam giác AHM có : DI // HM (DC // Mx)
AI =IM (gt)
=> DI là đường trung bình của tam giác AHM
=> AD =DH (1)
xét tam giác BDC có: DC // HM (DC // Mx)
BM = MC (gt)
=> HM là đường trung bình của tam giác BDC
=> DH = HB (2)
từ (1) và (2) => AD = DH = HB
=> AD=1/2 DB hay BD = 2AD => đpcm