một ôtô dự định đi từ A đến B trong một thời gian nhất định. Nếu xe chạy mỗi giờ nhanh hơn dự định 10km thì đến nơi sớm hơn dự định 3 giờ. Nếu xe chạy chậm lại mỗi giờ 10km thì đến nơi chậm 5 giờ. Tính vận tốc xe lúc đầu, thời gian dự định và quãng đường AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi vận tốc ban đầu là x (km/h); (x > 10). Thời gian chạy dự định là y (giờ)
Chiều dài quãng đường là: x.y
Nếu xe chạy mỗi giờ nhanh hơn 10 km thì đến nơi sớm hơn dự định 3 giờ. Vận tốc xe khi đó là
x + 10 (km /h ); thời gian đi là : y – 3 ( giờ) .
Chiều dài quãng đường là (x + 10)(y - 3)
Nếu xe chạy chậm lại mỗi giờ 10km thì đến nơi chậm mất 5 giờ. Vận tốc xe đi khi đó là: x – 10 ( km/h) và thời gian đi là : y + 5( giờ).
Chiều dài quãng đường là
Suy ra ta có hệ:
Vậy vận tốc ban đầu là 40 km/h
Đáp án A
Gọi vận tốc ban đầu là x (km/h); (x > 10). Thời gian chạy dự định là y (giờ) (y > 3)
Chiều dài quãng đường là: x.y (km)
Nếu xe chạy mỗi giờ nhanh hơn 10 km thì đến nơi sớm hơn dự định 3 giờ. Vận tốc xe khi đó là
x + 10 (km /h ); thời gian đi là : y – 3 ( giờ) .
Chiều dài quãng đường là (x + 10)(y - 3)
Nếu xe chạy chậm lại mỗi giờ 10km thì đến nơi chậm mất 5 giờ. Vận tốc xe đi khi đó là: x – 10 ( km/h) và thời gian đi là : y + 5( giờ).
Chiều dài quãng đường là
Suy ra ta có hệ:
Vậy vận tốc ban đầu là 40 km/h
Gọi vận tốc lúc đầu của xe là x (km/h; x > 10), thời gian theo dự định là y (y > 3) (giờ)
Nếu xe chạy mỗi giờ nhanh hơn 10km thì đến nơi sớm hơn dự định 3 giờ nên ta có phương trình (x + 10) (y – 3) = xy
Suy ra hệ phương trình :
x − 10 y + 5 = x y x + 10 y − 3 = x y ⇔ − 3 x + 10 y = 30 5 x − 10 y = 50 ⇔ x = 40 y = 15
(thỏa mãn)
Vậy vận tốc ban đầu là 40 km/h
Đáp án: A
Gọi vận tốc lúc đầu của xe là x (km/h; x > 10), thời gian theo dự định là y (y > 3) (giờ)
Quãng đường xe đi được là: x.y (km)
Nếu xe chạy mỗi giờ nhanh hơn 10km thì đến nơi sớm hơn dự định 1 giờ nên ta có phương trình (x + 10) (y – 1) = xy
Nếu xe chạy chậm lại mỗi giờ 5 km thì đến nơi chậm mất 2 giờ nên ta có phương trình (x – 5) (y + 2) = xy
Suy ra hệ phương trình
x + 10 y − 1 = x y x − 5 y + 2 = x y ⇔ x y − x + 10 y − 10 = x y x y + 2 x − 5 y − 10 = x y ⇔ − x + 10 y = 10 2 x − 5 y = 10 ⇔ x = 10 y = 2
(Thỏa mãn)
Vậy vận tốc ban đầu là 10 km/h
Đáp án: C
Gọi vận tốc của xe lúc đầu là x (km/h) , chiều dài quãng đường AB là y (km) (x>10,y>0)
Theo đề bài :
Xin lỗi mình còn thiếu:
Hệ hương trình : \(\hept{\begin{cases}\frac{y}{x+10}=\frac{y}{x}-3\\\frac{y}{x-10}=\frac{y}{x}+5\end{cases}}\)
Giải ra được : x = 40 (TM) , y = 600 (TM)
Vậy vận tốc lúc đầu của xe là 40 km/h
Thời gian dự định là 15 giờ
Chiều dài quãng đường là 600 km
Gọi x là vận tốc của xe lúc đầu, y là thời gian dự định của người đó. Đk : x; y > 0
✰Nếu xe chạy mỗi giờ nhanh hơn 10km thì sẽ đến B sớm hơn dự định 3 giờ, nên ta có pt : \(\left(x+10\right).\left(y-3\right)=xy\left(1\right)\)
✰ Nếu xe chạy chậm hơn mỗi giờ 10km thì sẽ đến B chậm hơn dự định 5 giờ, nên ta có ptrình : \(\left(x-10\right).\left(y+5\right)=xy\left(2\right)\)
Vì quãng đường AB không thay đổi nên từ (1) và (2) ta có hệ :
\(\left\{{}\begin{matrix}\left(x+10\right)\left(y-3\right)=xy\\\left(x-10\right)\left(y+5\right)=xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy-3x+10y-30=xy\\xy+5x-10y-50=xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3x+10y=30\\5x-10y=50\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=80\\-3x+10y=30\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=\dfrac{30+3.40}{10}=15\end{matrix}\right.\)
Quãng đường AB dài : \(xy=40.15=600\left(km\right)\)
Vậy vận tốc của xe lúc đầu là 40km/h; thời gian dự định là 15h; chiều dài quãng đường AB là 600km.
Gọi thời gian dự định là x ( giờ) , vận tốc của xe lúc đầu là y ( km/h) ( x,y>0)
=> Chiều dài quãng đường AB là xy ( km)
Khi xe chạy nhanh hơn 10km mỗi giờ thì :
+) Vận tốc của xe lúc này là: y+10 (km/h)
+) Thời gian xe đi hết quãng đường AB là: x-3 ( giờ)
Ta có pt: ( x-3)(y+10)=xy (1)
Khi xe chạy chậm hơn 10km mỗi giờ thì:
+) Vận tốc của xe lúc này là: y-10 (km/h)
+) Thời gian xe đi hết quãng đường AB là: x+5 ( giờ)
Ta có pt: ( x+5)(y-10)=xy (2)
Từ (1) & (2) ta có hệ: \(\hept{\begin{cases}\left(x-3\right)\left(y+10\right)=xy\\\left(x+5\right)\left(y-10\right)=xy\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy+10x-3y-30=xy\\xy-10x+5y-50=xy\end{cases}\Leftrightarrow\hept{\begin{cases}10x-3y=30\\-10x+5y=50\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}10x-3y=30\\2y=80\end{cases}\Leftrightarrow\hept{\begin{cases}x=15\\y=40\end{cases}}}\)
Vậy thời gian xe dự định đi hết quãng đường AB là 15 giờ, vận tốc của xe lúc đầu là 40km/h.
Độ dài quãng đường AB là: 15.40=600(km)
Lời giải:
Gọi vận tốc dự định là $a$ (km/h)
Thời gian dự định: $\frac{AB}{a}$ (giờ)
Thời gian khi xe chạy nhanh hơn dự định 10km/h là: $\frac{AB}{a+10}$ (giờ)
Thời gian khi xe chạy chậm hơn dự định 10km/h là: $\frac{AB}{a-10}$ (giờ)
Theo bài ra ta có:
\(\left\{\begin{matrix} \frac{AB}{a}-\frac{AB}{a+10}=3\\ \frac{AB}{a-10}-\frac{AB}{a}=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{10AB}{a(a+10)}=3\\ \frac{10AB}{a(a-10)}=5\end{matrix}\right.\)
Chia theo vế: \(\frac{a(a-10)}{a(a+10)}=\frac{3}{5}\Leftrightarrow \frac{a-10}{a+10}=\frac{3}{5}\Leftrightarrow a=40\) (km/h)
$AB=\frac{3a(a+10)}{10}=\frac{3.40.50}{10}=600$ (km)
Gọi vận tốc theo dự định là x ( km/h; > 5 )
Gọi thời gian theo dự định là t ( h; > 1,5)
Quãng đường AB là: xt ( km) (1)
+) Mỗi h xe chạy nhanh hơn 10 (km)
=> Vận tốc là: x + 10 (km/h )
khi đó đến sớm hơn 1,5 h
=> Thời gian đi là: ( t - 1,5 ) ( h)
=> Quãng đường đi là: ( x + 10 ) ( t - 1,5 ) km (2)
+) Mỗi h xe chạy chậm hơn 5 (km)
=> Vận tốc là: x - 5 (km/h )
khi đó đến muộn hơn 1,5 h
=> Thời gian đi là: ( t + 1 ) ( h)
=> Quãng đường AB là: ( x - 5 ) ( t +1 ) km (3)
Từ (1) ; (2) ; (3) Ta có hệ:
\(\hept{\begin{cases}xt=\left(x-5\right)\left(t+1\right)\\xt=\left(x+10\right)\left(t-1,5\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}-5t+x=5\\10t-1,5x=15\end{cases}}\Leftrightarrow\hept{\begin{cases}t=9\\x=50\end{cases}}\)
=> Quãng đường AB = 50.9 = 450 km
Vậy:...