Giải giúp mk bài này với :1/1x2+1/2x3+1/3x4+.........1/999x1000+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+......+1/999-1/1000+1
=1-1/1000+1 (-1/2+1/2=0, -1/3+1/3=0. nên chỉ còn lai các số ko cùng cặp)
=999/1000+1
=1999/1000
Đáp án là 1999/1000
Mình không thể viết cách giải dc vì giải lâu lắm!
Vậy nha, chúc bạn may mắn
\(\frac{1}{1x2}+\frac{1}{1x3}+...+\frac{1}{999x1000}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}\)
\(=1-\frac{1}{1000}\)
\(=\frac{999}{1000}\)
1/1x2+1/2x3+1/3x4+...+1/999x1000
=1-1/2+1/2-1/3+1/3-1/4+...+1/999-1/1000
=1-1/1000
=1000/1000-1/1000
=999/1000
Gọi A là giá trị của biểu thức trên
\(\Rightarrow A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{999.1000}+\frac{1}{1000.1001}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{1000}-\frac{1}{1001}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{1001}\)
\(\Rightarrow A=\frac{999}{2002}\)
Chú / thích : Dấu " . " là dấu nhân nha
\(\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{999x1000}+1\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}+1\)
\(=2-\frac{1}{1000}=\frac{1999}{1000}\)
1/1.2+1/2.3+1/3.4+...+1/999.1000+1
=1-1/2+1/2-1/3+1/3-1/4+...+1/998-1/999+1/999-1/1000+1
=1-1/1000+1
=999/1000+1
=1999/1000
Chuẩn ko cần chỉnh
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{999\times1000}+1\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}+1\)
\(=1-\frac{1}{1000}+1\)
\(=\frac{999}{1000}+1\)
\(=\frac{1999}{1000}\)
1/1x2+1/2x3+1/3x4+.........1/999x1000+1
=1/1-1/1000+1
=1999/1000