K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2015

\(\sqrt[3]{26+15\sqrt{3}}+\sqrt[3]{26-15\sqrt{3}}=\sqrt[3]{8+12\sqrt{3}+18+3\sqrt{3}}+\sqrt[3]{8-12\sqrt{3}+18-3\sqrt{3}}=\sqrt[3]{\left(2+\sqrt{3}\right)^3}+\sqrt[3]{\left(2-\sqrt{3}\right)^3}=2+\sqrt{3}+2-\sqrt{3}=4\)

3 tháng 4 2015

\(=\sqrt[3]{2^3+3.2^2.\sqrt{3}+3.2.\left(\sqrt{3}\right)^2+\left(\sqrt{3}\right)^3}+\sqrt[3]{2^3-3.2^2.\sqrt{3}+3.2.\left(\sqrt{3}\right)^2+\left(-\sqrt{3}\right)^3}\)

\(=\sqrt[3]{\left(2+\sqrt{3}\right)^3}+\sqrt[3]{\left(2-\sqrt{3}\right)^3}=2+\sqrt{3}+2-\sqrt{3}=4\)

NV
14 tháng 5 2021

Đặt \(x=\sqrt[3]{26+15\sqrt{3}}+\sqrt[3]{26-15\sqrt[]{3}}\)

\(\Rightarrow x^3=52+3\sqrt[3]{\left(26+15\sqrt[]{3}\right)\left(26-15\sqrt[]{3}\right)}.x\)

\(\Leftrightarrow x^3=52+3x\)

\(\Leftrightarrow x^3-3x-52=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+13\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left[\left(x+2\right)^2+9\right]=0\)

\(\Leftrightarrow x=4\)

CT
13 tháng 1 2023

Yêu cầu đề bài là gì em?

rút gọn những biểu thức sau 

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

Lời giải:

Gọi biểu thức trên là $A$

Đặt \(\sqrt[3]{15\sqrt{3}-26}=a; \sqrt[3]{15\sqrt{3}+26}=b\). Ta có:

\(a^3-b^3=-52\)

\(ab=-1\)

\(A^3=(a-b)^3=a^3-3ab(a-b)-b^3=-52+3A\)

\(\Leftrightarrow A^3-3A+52=0\)

\(\Leftrightarrow A^2(A+4)-4A(A+4)+13(A+4)=0\)

\(\Leftrightarrow (A+4)(A^2-4A+13)=0\)

Dễ thấy $A^2-4A+13>0$ nên $A+4=0$

$\Leftrightarrow A=-4$

 

19 tháng 5 2017

Ta có: \(\hept{\begin{cases}\left(2-\sqrt{3}\right)^2.\left(26+15\sqrt{3}\right)=2+\sqrt{3}\\\left(2+\sqrt{3}\right)^2.\left(26-15\sqrt{3}\right)=2-\sqrt{3}\end{cases}}\)

Sửa đề:

\(\left(2-\sqrt{3}\right)\sqrt{26+15\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt{26-15\sqrt{3}}=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)

\(=\frac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\right)\)

\(=\frac{1}{\sqrt{2}}\left(\sqrt{3}+1-\sqrt{3}+1\right)\)

\(=\sqrt{2}\)

a) Ta có: \(M=\dfrac{2}{\sqrt{7}-\sqrt{6}}-\sqrt{28}+\sqrt{54}\)

\(=\dfrac{2\left(\sqrt{7}+\sqrt{6}\right)}{\left(\sqrt{7}-\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)}-2\sqrt{7}+3\sqrt{6}\)

\(=2\sqrt{7}+2\sqrt{6}-2\sqrt{7}+3\sqrt{6}\)

\(=5\sqrt{6}\)

b) Ta có: \(N=\left(2-\sqrt{3}\right)\left(\sqrt{26+15\sqrt{3}}\right)-\left(2+\sqrt{3}\right)\sqrt{26-15\sqrt{3}}\)

\(=\dfrac{\left(2-\sqrt{3}\right)\sqrt{52+30\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt{52-30\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\left(2-\sqrt{3}\right)\sqrt{27+2\cdot3\sqrt{3}\cdot5+25}-\left(2+\sqrt{3}\right)\sqrt{27-2\cdot3\sqrt{3}\cdot5+25}}{\sqrt{2}}\)

\(=\dfrac{\left(2-\sqrt{3}\right)\sqrt{\left(3\sqrt{3}+5\right)^2}-\left(2+\sqrt{3}\right)\sqrt{\left(3\sqrt{3}-5\right)^2}}{\sqrt{2}}\)

\(=\dfrac{\left(2-\sqrt{3}\right)\left(3\sqrt{3}+5\right)-\left(2+\sqrt{3}\right)\left(3\sqrt{3}-5\right)}{\sqrt{2}}\)

\(=\dfrac{6\sqrt{3}+10-9-5\sqrt{3}-\left(6\sqrt{3}-10+9-5\sqrt{3}\right)}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}+1-\sqrt{3}+1}{\sqrt{2}}\)

\(=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)

NV
25 tháng 10 2019

\(a=\sqrt[3]{15\sqrt{3}+26}+\sqrt[3]{15\sqrt{3}-26}\)

\(a^3=30\sqrt{3}+3a.\sqrt[3]{15^2.3-26^2}=30\sqrt{3}-3a\)

\(\Leftrightarrow a^3+3a-30\sqrt{3}=0\)

\(\Leftrightarrow\left(a-2\sqrt{3}\right)\left(a^2+2\sqrt{3}a+15\right)=0\)

\(\Rightarrow a=2\sqrt{3}\)

25 tháng 10 2019

Căn bậc hai. Căn bậc ba mơn đại ca