Tìm hai số nguyên biết tỉ số của chúng là \(\frac{5}{7}\)và tổng các bình phương của 2 số đó là 4736.
ĐỀ THI BÁN KÌ II NĂM 2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hai số đó là a và b.
Theo đề ta có:
a/b = 5/7 <=> 7a = 5b <=> b = (7/5)a
Cũng theo đề,
a² + b² = 4736
<=> a² + [(7/5)a]² = 4736
74a² = 118400
a² = 1600
a = 40
b =(7*40)/5 = 56
Đáp số:
40
56
Gọi 2 số cần tìm là a và b
\(\Rightarrow\frac{a}{b}=\frac{5}{7}\)
\(\Rightarrow\frac{a}{5}=\frac{b}{7}\)
\(\Rightarrow\frac{a^2}{25}=\frac{b^2}{49}\)
Mặt khác
\(a^2+b^2=4736\)
Áp dụng tc của dãy tỉ số bằng nhau Ta có
\(\frac{a^2}{25}=\frac{b^2}{49}=\frac{a^2+b^2}{25+49}=\frac{4736}{74}=64\)
\(\Rightarrow\begin{cases}a=\pm40\\b=\pm56\end{cases}\)
Mà 5.7>0
=> \(a.b\ge0\)
\(\Rightarrow\left(a;b\right)=\left\{\left(40;56\right);\left(-40;-56\right)\right\}\)
Gọi hai số đó là a và b.
Theo đề ta có:
a/b = 5/7 <=> 7a = 5b <=> b = (7/5)a
Cũng theo đề,
a² + b² = 4736
<=> a² + [(7/5)a]² = 4736
74a² = 118400
a² = 1600
a = 40
b =(7*40)/5 = 56
Đáp số: 40; 56
gọi 2 số cần tìm là a và b
ta có:
a/b=5/7
=>a/5=b/7 và a^2+b^2=4736
a/5=b/7=>a^2/25=b^2/49
áp dụng ............ ta có:
a^2/25=b^2/49=a^2+b^2/25+49=4736/74=64
=>a^2/25=64=>a^2=1600=>a=40 hoặc a= -40
=>b^2/49=64=>b^2=3136=>b=56 hoặc b=-56
Gọi hai số đó là a và b \(\left(|a|< |b|;a,b\inℤ\right)\)
Theo đề bài, ta có: \(\frac{a}{5}=\frac{b}{7}\Rightarrow\left(\frac{a}{5}\right)^2=\left(\frac{b}{7}\right)^2\Rightarrow\frac{a^2}{25}=\frac{b^2}{49}\)và \(a^2+b^2=4736\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a^2}{25}=\frac{b^2}{49}=\frac{a^2+b^2}{25+49}=\frac{4736}{74}=64\)
\(\Rightarrow\hept{\begin{cases}\frac{a^2}{25}=64\\\frac{b^2}{49}=64\end{cases}}\Rightarrow\hept{\begin{cases}a^2=64.25\\b^2=64.49\end{cases}}\Rightarrow\hept{\begin{cases}a^2=\left(8.5\right)^2\\b^2=\left(8.7\right)^2\end{cases}\Rightarrow\hept{\begin{cases}a=\pm40\\b=\pm56\end{cases}}}\)
Trường hợp \(|a|>|b|\)ta tìm được \(\hept{\begin{cases}a=\pm56\\b=\pm40\end{cases}}\)
Vậy có 4 bộ số (a; b) thỏa mãn là (40, 56); (56, 40); (-40, -56); (-56; -40)
Bấm vô đây:
Câu hỏi của Nguyễn Minh Huy - Toán lớp 7 - Học toán với OnlineMath
Gọi 2 số đó là a và b.
\(\frac{a}{b}=\frac{5}{7}\) ( từ đó suy ra a ; b cùng dấu )
\(\Rightarrow\frac{a}{5}=\frac{b}{7}\)
\(\Rightarrow\frac{a^2}{25}=\frac{b^2}{49}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a^2}{25}=\frac{b^2}{49}=\frac{a^2+b^2}{25+49}=\frac{4736}{74}=64\)
\(\frac{a^2}{25}=64\Rightarrow a^2=1600\Rightarrow a\in\left\{40;-40\right\}\)
\(\frac{b^2}{49}=64\Rightarrow b^2=3136\Rightarrow b\in\left\{56;-56\right\}\)
Mà a ; b cùng dấu nên :
\(\left(a;b\right)\in\left\{\left(40;56\right);\left(-40;-56\right)\right\}\)
40 va 56
to6i kho6ng cha8c1 d9a6u