K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

40 va 56

to6i kho6ng cha8c1 d9a6u

27 tháng 7 2016

 Gọi hai số đó là a và b. 
Theo đề ta có: 
a/b = 5/7 <=> 7a = 5b <=> b = (7/5)a 
Cũng theo đề, 
a² + b² = 4736 
<=> a² + [(7/5)a]² = 4736 
74a² = 118400 
a² = 1600 
a = 40 
b =(7*40)/5 = 56 

Đáp số: 
40 
56

2 tháng 3 2017

=40;56

9 tháng 4 2016

xin lỗi bạn nhé , mình mới học đến lớp 5

8 tháng 8 2016

Gọi 2 số cần tìm là a và b

\(\Rightarrow\frac{a}{b}=\frac{5}{7}\)

\(\Rightarrow\frac{a}{5}=\frac{b}{7}\)

\(\Rightarrow\frac{a^2}{25}=\frac{b^2}{49}\)

Mặt khác

\(a^2+b^2=4736\)

Áp dụng tc của dãy tỉ số bằng nhau Ta có

\(\frac{a^2}{25}=\frac{b^2}{49}=\frac{a^2+b^2}{25+49}=\frac{4736}{74}=64\)

\(\Rightarrow\begin{cases}a=\pm40\\b=\pm56\end{cases}\)

Mà 5.7>0

=> \(a.b\ge0\)

\(\Rightarrow\left(a;b\right)=\left\{\left(40;56\right);\left(-40;-56\right)\right\}\)

8 tháng 8 2016

 Gọi hai số đó là a và b. 
Theo đề ta có: 
a/b = 5/7 <=> 7a = 5b <=> b = (7/5)a 
Cũng theo đề, 
a² + b² = 4736 
<=> a² + [(7/5)a]² = 4736 
74a² = 118400 
a² = 1600 
a = 40 
b =(7*40)/5 = 56 
Đáp số: 40; 56

6 tháng 6 2018

Đọc tiếp...

6 tháng 6 2018

40 và 56 nha

1 tháng 11 2015

gọi 2 số cần tìm là a và b

ta có:

a/b=5/7

=>a/5=b/7   và a^2+b^2=4736

a/5=b/7=>a^2/25=b^2/49

áp dụng ............ ta có:

a^2/25=b^2/49=a^2+b^2/25+49=4736/74=64

=>a^2/25=64=>a^2=1600=>a=40 hoặc a= -40

=>b^2/49=64=>b^2=3136=>b=56 hoặc b=-56

18 tháng 4 2017

bn sai rùi

27 tháng 10 2021

Gọi hai số đó là a và b \(\left(|a|< |b|;a,b\inℤ\right)\)

Theo đề bài, ta có: \(\frac{a}{5}=\frac{b}{7}\Rightarrow\left(\frac{a}{5}\right)^2=\left(\frac{b}{7}\right)^2\Rightarrow\frac{a^2}{25}=\frac{b^2}{49}\)và \(a^2+b^2=4736\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a^2}{25}=\frac{b^2}{49}=\frac{a^2+b^2}{25+49}=\frac{4736}{74}=64\)

\(\Rightarrow\hept{\begin{cases}\frac{a^2}{25}=64\\\frac{b^2}{49}=64\end{cases}}\Rightarrow\hept{\begin{cases}a^2=64.25\\b^2=64.49\end{cases}}\Rightarrow\hept{\begin{cases}a^2=\left(8.5\right)^2\\b^2=\left(8.7\right)^2\end{cases}\Rightarrow\hept{\begin{cases}a=\pm40\\b=\pm56\end{cases}}}\)

Trường hợp \(|a|>|b|\)ta tìm được \(\hept{\begin{cases}a=\pm56\\b=\pm40\end{cases}}\)

Vậy có 4 bộ số (a; b) thỏa mãn là (40, 56); (56, 40); (-40, -56); (-56; -40)

25 tháng 10 2017

Bấm vô đây:

Câu hỏi của Nguyễn Minh Huy - Toán lớp 7 - Học toán với OnlineMath

15 tháng 7 2016

Gọi  2 số đó là a và b.

\(\frac{a}{b}=\frac{5}{7}\) ( từ đó suy ra a ; b cùng dấu )

\(\Rightarrow\frac{a}{5}=\frac{b}{7}\)

\(\Rightarrow\frac{a^2}{25}=\frac{b^2}{49}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{a^2}{25}=\frac{b^2}{49}=\frac{a^2+b^2}{25+49}=\frac{4736}{74}=64\)

\(\frac{a^2}{25}=64\Rightarrow a^2=1600\Rightarrow a\in\left\{40;-40\right\}\)

\(\frac{b^2}{49}=64\Rightarrow b^2=3136\Rightarrow b\in\left\{56;-56\right\}\)

Mà a ; b cùng dấu nên :

\(\left(a;b\right)\in\left\{\left(40;56\right);\left(-40;-56\right)\right\}\)