tìm hai số nguyên biết tỉ số của chúng là 5/7 và tổng các bình phương của hai số đó là 4736. ai làm nhanh mk tick cho cả lời giải nữa nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hai số đó là a và b \(\left(|a|< |b|;a,b\inℤ\right)\)
Theo đề bài, ta có: \(\frac{a}{5}=\frac{b}{7}\Rightarrow\left(\frac{a}{5}\right)^2=\left(\frac{b}{7}\right)^2\Rightarrow\frac{a^2}{25}=\frac{b^2}{49}\)và \(a^2+b^2=4736\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a^2}{25}=\frac{b^2}{49}=\frac{a^2+b^2}{25+49}=\frac{4736}{74}=64\)
\(\Rightarrow\hept{\begin{cases}\frac{a^2}{25}=64\\\frac{b^2}{49}=64\end{cases}}\Rightarrow\hept{\begin{cases}a^2=64.25\\b^2=64.49\end{cases}}\Rightarrow\hept{\begin{cases}a^2=\left(8.5\right)^2\\b^2=\left(8.7\right)^2\end{cases}\Rightarrow\hept{\begin{cases}a=\pm40\\b=\pm56\end{cases}}}\)
Trường hợp \(|a|>|b|\)ta tìm được \(\hept{\begin{cases}a=\pm56\\b=\pm40\end{cases}}\)
Vậy có 4 bộ số (a; b) thỏa mãn là (40, 56); (56, 40); (-40, -56); (-56; -40)
Gọi 2 số lần lượt là a và b
Ta có: \(\frac{a}{b}=\frac{5}{7}\)và a2 + b2 = 4736
Đặt \(\frac{a}{b}=\frac{5}{7}=k\Rightarrow a=5k;b=7k\)
Mà a2 + b2 = 4736
=> (5k)2 + (7k)2 = 4736
=> 25k2 + 49k2 = 4736
=> 74k2 = 4736
=> k2 = 4736 : 74 = 64
=> k = ±8
Với k = 8 => a = 5.8 = 40 ; b = 7.8 =56
Với k = -8 => a = 5.(-8) = -40 ; b = 7.(-8) = -56
Gọi số thứ nhất là 5a , số thứ hai 7a
\(\Rightarrow\) \(\left(5a\right)^2+\left(7a\right)^2=4736\)
\(\Leftrightarrow\)\(a^2.25+a^2.49=4736\)
\(\Leftrightarrow\)\(a^2.\left(49+25\right)=4736\)
\(\Leftrightarrow\)\(a^2.74=4736\)
\(\Rightarrow\)\(a^2=4736:74=64\)
\(\Rightarrow\)\(a=8\)
Vậy , số thứ nhất là : 8 . 5 = 40
Số thứ hai là : 8 . 7 = 56
Gọi hai số đó là a và b.
Theo đề ta có:
a/b = 5/7 <=> 7a = 5b <=> b = (7/5)a
Cũng theo đề,
a² + b² = 4736
<=> a² + [(7/5)a]² = 4736
74a² = 118400
a² = 1600
a = 40
b =(7*40)/5 = 56
Đáp số:
40
56
gọi 2 số phải tìm là a và b thì \(\frac{a}{b}\)=\(\frac{5}{7}\)nên a=5k và b=7k ta có:\(\left(a\right)^2\) + \(\left(b\right)^2\)=\(\left(5k\right)^2\)+\(\left(7k\right)^2\)=25k^2+49k^2=74k^2=4736
suy ra:k^2=64.do đó k=+-8
với k=8 thì a=40,b= 56
với k= -8 thì a= -40,b= -56
Theo đề ta có:
\(\frac{a}{b}=\frac{5}{7}\) \(\Leftrightarrow7a=5b\) \(\Leftrightarrow b=\frac{7}{5}a\)
Cũng theo đề,
a2 + b2 = 4736
\(\Leftrightarrow\) a2 + \(\left(\frac{7}{5}a\right)^2\) = 4736
\(\Leftrightarrow74a^2\) = 118400
a2 = 1600
a2 = 402
\(\Rightarrow\) a = 40
b = \(\frac{7.40}{5}=56\)
\(\text{Vậy hai số cần tìm là 40 và 56 }\)
xin lỗi bạn nhé , mình mới học đến lớp 5