Bài 2: Cho tam giác ABC có 3 đường phân giác trong AD, BE, CF cắt nhau tại I. Kẻ đường thẳng qua A song song với BC cắt DF và DE theo thứ tự tại M và N.
a) Chứng minh AM/BD = AC/BC
b) Chứng minh AM = AN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác \(HECD\) có :
∠\(HEC=90^0\) ( Vì \(BE\)⊥\(AC\) )
∠\(HDC=90^0\) ( Vì \(AD\)⊥\(BC\) )
Mà 2 góc này đối nhau do đó :
Tứ giác \(HECD\) nội tiếp đường tròn => ∠\(HDE\)\(=\)∠\(HCE\) ( Cùng chắn cung \(HE\) )\(\left(1\right)\)
Tương tự :
Tứ giác \(HFBD\) cũng nội tiếp đường tròn ( Vì ∠\(HBF\)\(=90^0\) và ∠\(HDB=90^0\))
=> ∠\(HDF=\) ∠\(FBH\) ( Cùng chắn cung \(HF\) )\(\left(2\right)\)
Ta lại có :
∠\(CFB=\) ∠\(BEC\) \(=90^0\)
Mà 2 góc này cùng nhìn cạnh \(BC\) do đó :
Tứ giác \(EFBC\:\) nội tiếp đường tròn => ∠\(EBF\)\(=\) ∠\(ECF\) ( Cùng chắn cung \(EF\) )\(\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\) suy ra ∠\(IDH=\) ∠\(KDH\) hay \(DH\) là tia phân giác của △\(DIK\)\(\left(4\right)\)
Mặc khác : Đường thẳng qua \(H\)//BC => Đường thẳng đó ⊥ \(AD\) tại \(H\) hay \(DH\) là đường cao của △\(DIK\)\(\left(5\right)\)
Từ \(\left(4\right)\) và \(\left(5\right)\) suy ra △\(DIK\) cân =>\(đpcm\)
Bài 6 :
Tự vẽ hình nhá :)
a) Gọi O là giao điểm của AC và EF
Xét tam giác ADC có :
EO // DC => AE/AD = AO/AC (1)
Xét tam giác ABC có :
OF // DC
=> CF/CB = CO/CA (2)
Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm
Bài 7 :
a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)
Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG
Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM
=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)
Từ (1) và (2) => CF / EF = DK / AD
Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È
=> CF = DK ( đpcm )
Bài 8 :
Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )
Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :
AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38
=> 1140 = 19.AN + 722
=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )
=> NC = 38 - 12 = 26 ( cm )
Lời giải:
a) Áp dụng định lý Talet cho:
Tam giác $CFD$ có $AM\parallel FD$:
$\frac{DF}{AM}=\frac{CD}{CM}(1)$
Tam giác $ABM$ có $ED\parallel AM$:
$\frac{ED}{AM}=\frac{BD}{BM}(2)$
Lấy $(1)+(2)\Rightarrow \frac{DE+DF}{AM}=\frac{CD}{BC:2}+\frac{BD}{BC:2}=\frac{BC}{BC:2}=2$
$\Rightarrow DE+DF=2AM$
Vì $AM$ không đổi khi $D$ di động nên $DE+DF$ không đổi khi $D$ di động
b) Dễ thấy $KADM$ là hình bình hành do có các cặp cạnh đối song song. Do đó $KA=DM$
Áp dụng định lý Talet cho trường hợp $AK\parallel BD$:
$\frac{KE}{ED}=\frac{KA}{BD}=\frac{DM}{BD}(3)$
Lấy $(1):(2)$ suy ra $\frac{DF}{ED}=\frac{CD}{BD}$
$\Rightarrow \frac{EF}{ED}=\frac{CD}{BD}-1=\frac{CD-BD}{BD}=\frac{CM+DM-(BM-DM)}{BD}=\frac{2DM}{BD}(4)$
Từ $(3);(4)\Rightarrow \frac{2KE}{ED}=\frac{EF}{ED}$
$\Rightarrow 2KE=EF\Rightarrow FK=EK$ hay $K$ là trung điểm $EF$
a) Ta có: AM//BD
=> \(\dfrac{AM}{BD}=\dfrac{AF}{FB}\)
Xét tam giác ACB có CF là đường phân giác góc C
=> \(\dfrac{AC}{BC}=\dfrac{AF}{BF}\) (theo t/chất đường phân giác trong tam giác)
=> \(\dfrac{AM}{BD}=\dfrac{AC}{BC}\)
Câu b đợi mình nháp xíu nha.