K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2017

Có : a<b<c

Nếu a=2 => b=3;c=5 => a^2+b^2+c^2 = 38 ko nguyên tố

Nếu a=3 => b=5 ; c=7 => a^2+b^2+c^2 = 83 là số nguyên tố

Nếu a>3 => b và c đều > 3 => a;b;c đều ko chia hết cho 3

=> a^2;b^2;c^2 đều ko chia hết cho 3

=> a^2;b^2;c^2 đều chia 3 dư 1

=> a^2+b^2+c^2 chia hết cho 3

Mà a^2+b^2+c^2 > 3

=> a^2+b^2+c^2 là hợp số

Vậy bộ 3 số nguyên tố nguyên liếp đó là : 3;5;7

k mk nha

29 tháng 7 2015

a biết rằng bình phương của một số nguyên hoặc chia hết cho 3 hoặc chia 3 dư 1 

* Nếu a, b, c không có số nào là 3 
=> a² chia 3 dư 1 ; b² chia 3 dư 1; c² chia 3 dư 1 
=> a²+b²+c² chia hết cho 3 vô lí do gt nguyên tố và hẳn nhiên a²+b²+c² > 3 

* Hơn nữa còn thấy không thể có số 2, vì nếu có 1 số là 2, 2 số còn lại là lẻ 
=> a²+b²+c² chẳn => không nguyên tố 

*Vậy phải có 1 số là 3, và không có số 2 => 3 số ng tố liên tiếp chỉ có thể là 3,5,7 
Kiểm tra lại: 3²+5²+7² = 83 nguyên tố 

Vậy 3 số cần tìm là: 3, 5, 7 

25 tháng 8 2019

9 Tìm số nguyên tố p sao cho : 

a) Nếu p = 2 

=> p + 16 = 2 + 16 = 18 (hợp số)

=> p = 2 (loại) 

Nếu p = 3 

=> p + 16 = 3 + 16 = 19 (số ngyên tố)

=> p + 38 = 3 + 38 = 41 (số nguyên tố)

=> p = 3 (chọn)

Nếu p > 3

=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\left(k\inℕ^∗\right)}\)

Nếu p = 3k + 1

=> p + 38 = 3k + 1 + 38 = 3k + 39 = 3(k + 13) \(⋮\)3

=> p = 3k + 1 (loại)

Nếu p = 3k + 2

=> p + 16 = 3k + 2 + 16 = 3k + 18 = 3(k + 6) \(⋮\)3

=> p = 3k + 2 (loại)

Vậy p = 3

b) Nếu p = 2 

=> p + 28 = 2 + 28 = 30 (hợp số)

=> p = 2 (loại) 

Nếu p = 3 

=> p + 28 = 3 + 28 = 31 (số ngyên tố)

=> p + 44 = 3 + 44 = 47 (số nguyên tố)

=> p = 3 (chọn)

Nếu p > 3

=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\left(k\inℕ^∗\right)}\)

Nếu p = 3k + 1

=> p + 44 =  3k + 1 + 44 = 3k + 45 = 3(k + 15) \(⋮\)3

=> p = 3k + 1 (loại)

Nếu p = 3k + 2

=> p + 28 = 3k + 2 + 28 = 3k + 30 = 3(k + 10) \(⋮\)3

=> p = 3k + 2 (loại)

Vậy p = 3

 c) Nếu p = 2 

=> p + 26 = 2 + 26 = 28 (hợp số)

=> p = 2 (loại)

Nếu p = 3 

=> p + 42 = 3 + 42 = 45 (hợp số)

=> p = 3 (loại)

Nếu p = 5

=> p + 26 = 5 + 26 = 31 (số nguyên tố)

=> p + 42 = 5 + 42 = 47 (số nguyên tố)

=> p + 48 = 5 + 48 = 53 (số nguyên tố)

=> p + 74 = 5 + 74 = 79 (số nguyên tố)

=> p = 5 (chọn)

Nếu p > 5

=> p = 5k + 1 hoặc p = 5k + 2 hoặc p = 5k + 3 hoặc p = 5k + 4 (\(k\inℕ^∗\))

Nếu p = 5k + 1

=> p + 74 = 5k + 1 + 74 = 5k + 75 = 5(k + 15) \(⋮\)

=> p + 74 là hợp số 

=> p = 5k + 1 (loại)

Nếu p = 5k + 2

=> p + 48 = 5k + 2 + 48 = 5k + 50 = 5(k + 10) \(⋮\)5

=> p + 48 là hợp số 

=> p = 5k + 2 (loại)

Nếu p = 5k + 3

=> p + 42 = 5k + 3 + 42 = 5k + 45 = 5(k + 9) \(⋮\)5

=> p + 42 là hợp số 

=> p = 5k + 3 (loại)

Nếu p = 5k + 4

=> p + 26 = 5k + 4 + 26 = 5k + 30 = 5(k + 6) \(⋮\)5

=> p + 26 là hợp số 

=> p = 5k + 4 (loại)

Vậy p = 5

10) a) Gọi 3 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2

Ta có : a + a + 1 + a + 2 = 3a + 6 

                                       = 3(a + 2) \(⋮\)3

=> Tổng của 3 số tự nhiên liên tiếp là hợp số 

b) Gọi 3 số tự nhiên lẻ liên tiếp là : a ; a + 2 ; a + 4

=> Ta có : a + a + 2 + a + 4  = 3a + 6

                                             = 3(a + 2) \(⋮\)3

=> Tổng của 3 số tự nhiên lẻ liên tiếp là hợp số 

16 tháng 5 2016

Không có a,b,c thỏa mãn điều kiện.

  Vì:

Giả sử a2=B.=>B:a=a.

=>Ư(B)={1;a;B}

Mà số nguyên tố là số chỉ có ước là 1 & chính nó(B)

15 tháng 11 2015

Các bộ ba chữ số nguyên tố liên tiếp có thể là (2;3;5); (3;5;7)

Tính 22 + 3+ 5= 4 + 9 + 25 = 38 là hợp số => Loại

Tính 32 + 52 + 7= 9 + 25 + 49 = 83 là số nguyên tố 

Vậy bộ ba số đó là 3;5; 7