Chứng minh rằng
a)\(\frac{5}{8}<\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}<\frac{3}{4}\)
b)\(\frac{1}{4}+\frac{1}{6}+\frac{1}{16}+...+\frac{1}{10000}<\frac{3}{4}\)
c)(\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{199}{200}\))2 <\(\frac{1}{201}\)
d)\(50<1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}...+\frac{1}{2^{100}-1}<100\)