K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

Các đường thẳng HA, HB, HC lần lượt cắt cạnh đối BC, AC, AB tại N, M, E

a) ∆HBC có:

HN ⊥ BC nên HN là đường cao

BE ⊥ HC nên BE là đường cao

CM ⊥ BH nên CM là đường cao

Vậy A là trực tâm của ∆HBC

b) Tương tự trực tâm của ∆AHB là C, ∆AHC là B

19 tháng 4 2017

Giải bài 61 trang 83 SGK Toán 7 Tập 2 | Giải toán lớp 7

Các đường thẳng HA, HB, HC lần lượt cắt cạnh đối BC, Ac, AB tại N, M, E.

a) ΔHBC có :

HN ⊥ BC nên HN là đường cao

BE ⊥ HC nên BE là đường cao

CM ⊥ BH nên CM là đường cao

Vậy A là trực tâm của ΔHBC.

b) Tương tự, trực tâm của ΔAHB là C; ΔAHC là B.

13 tháng 3 2016

a) ∆HBC có:

HN ⊥ BC nên HN là đường cao

BE ⊥ HC nên BE là đường cao

CM ⊥ BH nên CM là đường cao

Vậy A là trực tâm của ∆HBC

b) Tương tự trực tâm của ∆AHB là C, ∆AHC là B



Xem thêm tại: http://loigiaihay.com/bai-61-trang-83-sgk-toan-lop-7-tap-2-c42a5894.html#ixzz42m05cED4

13 tháng 4 2016

Các đường thẳng HA, HB, HC lần lượt cắt cạnh đối BC, AC, AB tại N, M, E

 

a) ∆HBC có:

HN ⊥ BC nên HN là đường cao

BE ⊥ HC nên BE là đường cao

CM ⊥ BH nên CM là đường cao

Vậy A là trực tâm của ∆HBC

b) Tương tự trực tâm của ∆AHB là C, ∆AHC là B

 

5 tháng 8 2017

Các đường thẳng HA, HB, HC lần lượt cắt cạnh đối BC, AC, AB tại N, M, E

a) ∆HBC có:

HN ⊥ BC nên HN là đường cao

BE ⊥ HC nên BE là đường cao

CM ⊥ BH nên CM là đường cao

Vậy A là trực tâm của ∆HBC

b) Tương tự trực tâm của ∆AHB là C, ∆AHC là B

24 tháng 8 2017

Các đường thẳng HA,HB,HC lần lượt cắt 3 cạnh đối AB,AC,BC tại M,N,E

a,Xét tam giác HBC ta có

HN\(\perp\) BC nên HN là đường cao

BE\(\perp\) HC nên BI là đường cao

CM\(\perp\) BH nên CM là đường cao

\(\Rightarrow\) A là trực tâm của \(\Delta\) HBC

b,Tương tự trực tâm của \(\Delta\) AHB là C,\(\Delta\) AHC là B

24 tháng 8 2017

Lần sau bạn nên vẽ hình!

29 tháng 3 2019

Giải bài 61 trang 83 SGK Toán 7 Tập 2 | Giải toán lớp 7

Gọi D, E, F là chân các đường vuông góc kẻ từ A, B, C của ΔABC.

⇒ AD ⟘ BC, BE ⟘ AC, CF ⟘ AB.

 ΔHBC có :

AD ⊥ BC nên AD là đường cao từ H đến BC.

BA ⊥ HC tại F nên BA là đường cao từ B đến HC

CA ⊥ BH tại E nên CA là đường cao từ C đến HB.

AD, BA, CA cắt nhau tại A nên A là trực tâm của ΔHCB.

a) ∆HBC có:

HN ⊥ BC nên HN là đường cao

BE ⊥ HC nên BE là đường cao

CM ⊥ BH nên CM là đường cao

Vậy A là trực tâm của ∆HBC

b) Tương tự trực tâm của ∆AHB là C, ∆AHC là B

26 tháng 2 2018

Giải bài 61 trang 83 SGK Toán 7 Tập 2 | Giải toán lớp 7

Gọi D, E, F là chân các đường vuông góc kẻ từ A, B, C của ΔABC.

⇒ AD ⟘ BC, BE ⟘ AC, CF ⟘ AB.

Tương tự :

+ Trực tâm của ΔHAB là C (C là giao điểm của ba đường cao : CF, AC, BC)

 

+ Trực tâm của ΔHAC là B (B là giao điểm của ba đường cao : BE, AB, CB)