K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AMCK có 

I là trung điểm của AC
I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

b: \(S_{ABC}=\dfrac{AM\cdot BC}{2}=3\cdot4=12\left(cm^2\right)\)

14 tháng 11 2021

 mn ơi giupsmik với nhanh nhanh 

 gấp lắm

14 tháng 11 2021

a, Vì I là trung điểm AC và MK nên AMCK là hbh

Do đó AK//CM hay AK//BM và \(AK=BM=MC\) (M là trung điểm BC)

Vậy ABMK là hbh

b, Từ câu a ta có AMCK là hbh

c, Để AMCK là hcn thì \(AM\perp MC\) hay AM là đường cao tam giác ABC hay tam giác ABC cân tại A (AM vừa là đường cao vừa là trung tuyến)

24 tháng 10 2021

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

Xét tứ giác AMCK có 

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

24 tháng 10 2021

a, Vì I là trung điểm MK và AC nên AMCK là hbh

Mà AM là tt nên cx là đường cao 

Do đó AM⊥MN nên AMCK là hcn

b, Vì AMCK là hcn nên AK//CM hay AK//MB và AK=CM=BM(do AM là tt)

Do đó AKMB là hbh

24 tháng 10 2021

a: Xét tứ giác AMCK có

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

24 tháng 10 2021

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

Xét tứ giác AMCK có

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

8 tháng 11 2017

Bạn vẽ được hình ko

8 tháng 11 2017

Tứ giác AMCK là hcn vì

AI=IC(I là trung điểm của AC)

IM=IK(K là điểm đối xứng vs M qua I)

=>Tứ giác AMCK là hình bình hành(DHNB số 5)

Xét tứ giác AMCK có góc M vuông

=> Hình bình hành AMCK là hcn

Tứ giác ACMB là hình bình hành vì

Ta có Bm ss AK (MC ss AK theo tính chắt hcn)

Xét tam giác ABC có BM=MC,AI=IC

=>IM là đường trung bình của tam giác ABC

=>IM ss Ab

Mà I nằm giữa M và K =>MK ss AB

=>ABMK là hình bình hành (DHNB số 1)

Vì AMCk là hcn nên chỉ cần MI vuông góc CA là hình vuông

a: Xét tứ giác AMCK có 

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành