Tìm tất cả các số nguyên dương n để \(1+n^{2017}+n^{2018}\) là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=1+n^{2017}+n^{2018}\)
Với \(n=1\Rightarrow A=3\)là số nguyên tố
Với \(n>1\)ta có : \(1+n^{2017}+n^{2018}=\left(n^{2018}-n^2\right)+\left(n^{2017}-n\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^{2016}-1\right)+n\left(n^{2016}-1\right)+\left(n^2+n+1\right)=\left(n^2+n\right)\left(n^{2016}-1\right)+\left(n^2+n+1\right)\)
Mà : \(n^{2016}-1=\left(n^3\right)^{672}-1=\left(n^3-1\right)\left[\left(n^3\right)^{671}+\left(n^3\right)^{670}+...+n^3+1\right]⋮n^3-1\)
\(\Rightarrow\)\(\left(n^{2016}-1\right)⋮\left(n^2+n+1\right)\Rightarrow A⋮\left(n^2+n+1\right)\)
Ta lại có : \(1< n^2+n+1< A\)nên A là số nguyên tố
Vậy n = 1 là số nguyên dương duy nhất thỏa mãn điều kiện đề bài
để làm gì đề đâu viết thêm đề mình làm cho
chung tên đăng nhập kb nhé
n không thể là số lẻ vì lúc đó ít nhất 6 số chẵn > 2 nên không thể là số nguyên tố. Dễ thấy với n = 2 số n + 7 = 9 là hợp số (tất nhiên không chỉ số đó nhưng ta không cần gì hơn), với n = 4 số n + 5 = 9 là hợp số. Với n = 6 dễ thấy cả 7 số đều là số nguyên tố.
Dễ thấy là trong 7 số đã cho có 1 số chia hết cho 7. Thật thế 7 số đã cho khi chia cho 7 có cùng số dư với 7 số n+1, n+5, n+7, n+6, n+3, n+4, n+2 mà trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7.
=> với n ≥ 8 trong 7 số đã cho có 1 số chia hết cho 7 và > 7 nên là hợp số.
=> số duy nhất thỏa mãn là n = 6
Với n nguyên dương.
Đặt A=\(n^{2015}+n+1=\left(n^{2015}-n^2\right)+\left(n^2+n+1\right)=n^2\left(n^{2013}-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(\left(n^3\right)^{.671}-1\right)+\left(n^2+n+1\right)\)
Mà : \(\left(n^3\right)^{.671}-1⋮\left(n^3-1\right)\)
và \(n^3-1=\left(n-1\right)\left(n^2+n+1\right)\)
=> \(\left(n^3\right)^{671}-1⋮\left(n^2+n+1\right)\)
=> \(A⋮n^2+n+1\)
Theo bài ra: A là số nguyên tố
=> \(\orbr{\begin{cases}A=n^2+n+1\\n^2+n+1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}n^{2015}=n^2\\n^2+n=0\end{cases}\Leftrightarrow}}\orbr{\begin{cases}n=1\left(tm\right)\\n=0;n=-1\left(loai\right)\end{cases}}\)vì n nguyên dương
Vậy n=1
Xét n=1 thì biểu thức A = 3
Xét n>1:
Ta có: \(A=n^{2015}+n+1\)
\(=\left(n^{2015}-n^2\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^{2013}-1\right)+\left(n^2+n+1\right)\)
Dễ nhận ra \(n^{2013}-1⋮n^3-1\Rightarrow n^{2013}-1=k\left(n^3-1\right)=k\left(n-1\right)\left(n^2+n+1\right)\)
\(\Rightarrow n^2\left(n^{2013}-1\right)=k\left(n-1\right)n^2\left(n^2+n+1\right)=k'\left(n^2+n+1\right)\)
\(\Rightarrow A=k'\left(n^2+n+1\right)+\left(n^2+n+1\right)=\left(n^2+n+1\right)\left(k'+1\right)\)là hợp số
Vậy n=1
n không thể là số lẻ vì lúc đó ít nhất 6 số chẵn > 2 nên không thể là số nguyên tố. Dễ thấy với n = 2 số n + 7 = 9 là hợp số (tất nhiên không chỉ số đó nhưng ta không cần gì hơn), với n = 4 số n + 5 = 9 là hợp số. Với n = 6 dễ thấy cả 7 số đều là số nguyên tố.
Dễ thấy là trong 7 số đã cho có 1 số chia hết cho 7. Thật thế 7 số đã cho khi chia cho 7 có cùng số dư với 7 số n+1, n+5, n+7, n+6, n+3, n+4, n+2 mà trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7.
=> với n ≥ 8 trong 7 số đã cho có 1 số chia hết cho 7 và > 7 nên là hợp số.
=> số duy nhất thỏa mãn là n = 6
**** mik nha
Đặt A=1+n2017+n2018
*Nếu: n=1 => A= 1 + 12017 + 12018 = 3 (t/m)
Do đó: A là số nguyên tố
*Nếu: n>1
1+n2017+n2018
=(n2018-n2)+(n2017-n)+(n2+n+1)
=n2.(n2016-1)+n.(n2016-1)+(n2+n).(n2016-1)+(n2+n+1)
Vì: n2016 chia hết cho n3
=> n2016-1 chia hết cho n3-1
=> n2016-1 chia hết cho (n2+n+1)
Mà: 1<n2+n+1<A=> A là số nguyên tố (k/tm đk đề bài số nguyên dương)
Vậy n=1