cho tam giác ABC trung tuyến AM, CN cắt nhau tại G. K là điểm nằm trên BC , đường thẳng qua K song song với CN cắt AB ở D, đường thằng qua K song song với BM cắt AC ở E. Gọi I là giao điểm của KG với DE. Chứng minh: I là trung điểm của DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có
BM,CN là trung tuyến
BM cắt CN tại G
=>G là trọng tâm
=>K là trung điểm của BC
Xét ΔBNC co
K là trung điểm của BC
KD//NC
=>D là trung điểm của NB
Xét ΔBMC có
K làtrung điểm của CB
KE//BM
=>E là trung điểm của MC
BD=1/2BN=1/4AB
=>AD=3/4AB
CE=1/2CM=1/4AB
=>AE=3/4AC
Xét ΔABC có AD/AB=AE/AC
nên DE//BC
Xét ΔABK có DI//BK
nên DI/BK=AI/AK
Xét ΔACK có IE//KC
nên IE/KC=AI/AK
=>DI/BK=IE/KC
=>DI=IE
=>I là trung điểm của DE
Qua K vẽ đường thẳng // với AB cắt AC tại H.
=> AHKD là hình bình hành => DK = AH (1)
Gọi giao điểm của AK và DH là O. Vì AHKD là HBH => DO = OH
Xét 3 đường thẳng MA, CA, BA đồng quy tại A cắt 2 đường thẳng DH và BC ta được: DO/OH = BM/MC = 1
=> DH // BC (định lí chùm đường thẳng đồng quy đảo)
Xét ∆ ADH và ∆ FEC có:
AD = EF ( t/c đoạn chắn) ; DH = EC (t/c đoạn chắn) ; ^ADH = ^FEC => ∆ ADH = ∆ FEC (c-g-c)
=> AH = CF (2)
Từ (1) và (2) => CF = DK (đpcm)
GL
Do EF//AB⇒\(\frac{CF}{CA}=\frac{EF}{AB}\)⇒\(\frac{CF}{EF}=\frac{AC}{AB}\)(1)
Dựng MG//AC và MM là trung điểm cạnh BC
⇒GM là đường trung bình ΔABC
=⇒G là trung điểm cạnh AB ⇒AG=BG
Do DK//GM⇒\(\frac{AD}{AG}=\frac{DK}{GM}\)⇒\(\frac{AD}{BG}=\frac{DK}{GM}\)
=> \(\frac{DK}{AD}=\frac{GM}{BG}=\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB}\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\frac{CF}{EF}=\frac{DK}{AD}\)
Mà tứ giác ADEF là hình bình hành (vì EF//AD và DE//AF) nên AD=EF
=> CF=DK (đpcm)
Nguồn: thuynga