K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2021

câu c) C/M: MN//EF

1 tháng 3 2021

 cho tam giác DEF nha

14 tháng 4 2020

a) Xét tam giác DEH và tam giác DFH ta có:

        DE = DF ( tam giác DEF cân tại D )

        DEH = DFH ( tam giác DEF cân tại D )

        EH = EF ( H là trung điểm của EF )

=> tam giác DEH = tam giác DFH ( c.g.c) (dpcm)

=> DHE=DHF(hai góc tương ứng)

Mà DHE+DHF=180 độ  =>DHE=DHF=180 độ / 2 = 90 độ ( góc vuông ) hay DH vuông góc với EF ( dpcm )

 b) Xét tam giác MEH và tam giac NFH ta có:

          EH=FH(theo a)

          MEH=NFH(theo a)

  => tam giác MEH = tam giác NFH ( ch-gn)

  => HM=HN ( 2 cạnh tương ứng ) hay tam giác HMN cân tại H ( dpcm )

c) Ta có : +) DM+ME=DE =>DM=DE-ME

                +) DN+NF=DF => DN=DF-NF

Mà DE=DF(theo a)   ;     ME=NF( theo b tam giác MEH=tam giác NFH)

=>DM=DN => tam giác DMN cân tại D 

Xét tam giac cân DMN ta có:

     DMN=DNM=180-MDN/2      (*)

Xét tam giác cân DEF ta có:

     DEF=DFE =180-MDN/2       (*)

Từ (*) và (*) Suy ra góc DMN = góc DEF

Mà DMN và DEF ở vị trí đồng vị

=> MN//EF (dpcm)

d) Xét tam giác DEK và tam giác DFK ta có:

        DK là cạnh chung

        DE=DF(theo a)

    => tam giác DEK= tam giác DFK(ch-cgv)

   =>DKE=DKF(2 góc tương ứng)

   =>DK là tia phân giác của góc EDF       (1)

Theo a tam giac DEH= tam giac DFH(c.g.c)

   =>EDH=FDH(2 góc tương ứng)

   =>DH là tia phân giác của góc EDF        (2)

Từ (1) và (2) Suy ra D,H,K thẳng hàng (dpcm)

5 tháng 2 2021

a)xét tam giác DEH và tam giác DFH có:

          EH=FH ( gt)

          góc DHE=góc DHF ( vì tam giác DEF cân tại D)

          DH:cạnh chung

Do đó: tam giác DEH=tam giác DFH(c-g-c)

a) Xét ΔHDE vuông tại H và ΔHDF vuông tại H có

DE=DF(ΔDEF cân tại D)

DH là cạnh chung

Do đó: ΔHDE=ΔHDF(cạnh huyền-cạnh góc vuông)

\(\widehat{HDE}=\widehat{HDF}\)(hai góc tương ứng)

b) Xét ΔHDM vuông tại M và ΔHDN vuông tại N có

DH là cạnh chung

\(\widehat{MDH}=\widehat{NDH}\)(\(\widehat{HDE}=\widehat{HDF}\), M∈DE; N∈DF)

Do đó: ΔHDM=ΔHDN(cạnh huyền-góc nhọn)

⇒HM=HN(hai cạnh tương ứng)

c) Xét ΔHME vuông tại M và ΔHNF vuông tại N có

HE=HF(ΔHDE=ΔHDF)

\(\widehat{E}=\widehat{F}\)(hai góc ở đáy của ΔDFE cân tại D)

Do đó: ΔHME=ΔHNF(cạnh huyền-góc nhọn)

3 tháng 4 2020

a)

Δ HDE và △ HDF ta có

ED =DF

DH cạnh chung

vậy ΔHDE=ΔHDF( ch-cgv)

b)

Xét Δ MEH và ΔNEH ta có

góc E=góc F (do Δ HDE= Δ HDF nên )

EH=HF ( do tam giác HDE= tam giác HDF nên)

vậy tam giác MEH =tam giác NFH( ch-gn)

do đó EH=FH ( do 2 cạnh tương ứng)

câu c mình đã chứng minh ở câu b rồi

NẾU BẠN MUỐN CHỨNG MINH CÂU B CÁCH KHÁC CŨNG ĐC = CÁCH CHỨNG MINH TAM GIÁC DM

3 tháng 4 2020

Em xem lại đề nhé !

3 tháng 4 2020

đúng đề rồi ạ

26 tháng 3 2023

a) xét tam giác DHE và tam giác DHF có

DH chung

DE = DF (gt)

góc DHE = góc DHF (=90 độ)

=> tam giác DHE = tam giác DHF (c.g.c)

=> HE = HF

=> H là trung điểm của EF

b) xét tam giác EMH và tam giác FNH có

HE = HF (cmt)

Góc MEH = góc MFH (gt)

Góc EHM = góc FHM (đối đỉnh)

=> tam giác EMH = tam giác FNH (g.c.g)

=> HM = HN

=> tam giác HMN cân tại H

a: Xét ΔDEH vuông tại H và ΔDFH vuông tại H có
DE=DF
DH chung

=>ΔDEH=ΔDFH

=>EH=FH

=>H là trung điểm của EF

b: Xet ΔDMH và ΔDNH có

DM=DN

góc MDH=góc NDH

DH chung

=>ΔDMH=ΔDNH

=>HM=NH

c: Xet ΔDEF có DM/DE=DN/DF

nên MN//EF

d: ΔDMN cân tại D

mà DI là trug tuyến

nên DI là phân giác của góc EDF

=>D,I,H thẳng hàng

18 tháng 3 2021

a/

Xét tg ABM và tg ACM có

MB=MC (đề bài)

AB=AC (Do tg ABC cân tại A)

\(\widehat{ABC}=\widehat{ACB}\) (Do tg ABC cân tại A)

=> tg ABM=tg ACM (c.g.c)

Ta có MB=MC => AM là trung tuyến của tg ABC => \(AM\perp BC\) (trong tg cân đường trung tuyến đồng thời là đường cao)

b/

Xét tg vuông BME và tg vuông CMF có

MB=MC

\(\widehat{ABC}=\widehat{ACB}\)

=> tg BME = tg CMF (hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => ME=MF => tg EMF cân tại M

c/

Do \(AM\perp BC\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)

Do tg BME = tg CMF \(\Rightarrow\widehat{BME}=\widehat{CME}\)

\(\Rightarrow\widehat{AME}=\widehat{AMF}\) (cungf phụ với \(\widehat{BME}\) = \(\widehat{CMF}\) )

=> AM là phân giác của \(\widehat{FME}\Rightarrow AM\perp EF\)  (Trong tg can EMF đường phân giác đồng thời là đường cao)

Mà \(AM\perp BC\)

=> EF//BC (cùng vuông góc với AM)