K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

\(x\left(x-2\right)-1\left(x-2\right)=2\)

\(x^2-2x-x+2-2=0\)

\(x^2-3x=0\)

\(x\left(x-3\right)=0\)

\(Th1:x=0\)

\(Th2:x-3=0=>x=3\)

Vậy\(x\in\left\{0;3\right\}\)

Toán 8 mà

22 tháng 12 2021

(x-1).(x-2)=2

x2-2x-x+2=2

x2-3x=0

x(x-3)=0

TH1: x=0

TH2: x-3=0 =>x=3

18 tháng 4 2022

\(#V\)

\(⇔ x ( 1 + 0 , 3 ) = 1 , 3\)

\(⇔ x .1 , 3 = 1 , 3\)

\(⇔ x = 1 , 3 : 1 , 3\)

\(⇔ x = 1\)

18 tháng 4 2022

x+30%.x=-1,3

=>x+310.x=-1,3

=>x.(310+1)=-1,3

=>x.1,3=-1,3

=>x=-1,3:1,3

=>x=-1

NV
2 tháng 12 2021

\(\Delta'=16-\left(3m+1\right)\ge0\Rightarrow m\le5\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-8\\x_1x_2=3m+1\end{matrix}\right.\)

Kết hợp điều kiện đề bài ta được: \(\left\{{}\begin{matrix}x_1+x_2=-8\\5x_1-x_2=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-8\\6x_1=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=-7\end{matrix}\right.\)

Thế vào \(x_1x_2=3m+1\)

\(\Rightarrow\left(-1\right).\left(-7\right)=3m+1\)

\(\Rightarrow m=2\) (thỏa mãn)

a) Ta có: \(\left(2x+7\right)^2=\left(x+3\right)^2\)

\(\Leftrightarrow\left(2x+7\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(2x+7-x-3\right)\left(2x+7+x+3\right)=0\)

\(\Leftrightarrow\left(x+4\right)\cdot\left(3x+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\3x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\3x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-\dfrac{10}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{-4;-\dfrac{10}{3}\right\}\)

b) Ta có: \(\left(4x+14\right)^2=\left(7x+2\right)^2\)

\(\Leftrightarrow\left(4x+14\right)^2-\left(7x+2\right)^2=0\)

\(\Leftrightarrow\left(4x+14-7x-2\right)\left(4x+14+7x+2\right)=0\)

\(\Leftrightarrow\left(-3x+12\right)\left(11x+16\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-3x+12=0\\11x+16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x=-12\\11x=-16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{16}{11}\end{matrix}\right.\)Vậy: \(S=\left\{4;-\dfrac{16}{11}\right\}\)

13 tháng 1 2021

(2x+7)2=(x+3)2

=>(2x+7)2-(x+3)2=0

=>(2x+7-x-3)(2x+7+x+3)=0

=>(x-4)(3x+10)=0

=>x-4=0 hoặc 3x+10=0

TH1:x-4=0=>x=4

TH2:3x+10=0=>x=-10/3

 

(4x+14)2=(7x+2)2

(4x+14)2-(7x+2)2=0

(4x+14-7x-2)(4x+14+7x+2)=0

(-3x+12)(11x+16)=0

TH1:-3x+12=0=>x=4

TH2:11x+16=0=>x=-16/11

2 tháng 4 2023

1.B

2.A

3.B

4.C

5.B

6.D

7.C

8.D

9.B

10.A

3 tháng 4 2023

mik xin chân thành cảm ơn bn nha!yeuvui

28 tháng 9 2021

\(\left(3-x\right)\left(x+1\right)-\left(2.x\right)\left(x+2\right)-3\)

\(=3x+3-x^2-x-2x^2-4x-3=-3x^2-2x\)

X³-4x+x-2=x×(x²-4)+(x-2) =x×(x-2)×(x+2)+(x-2) =(x-2)×(x×(x+2)+1)
AH
Akai Haruma
Giáo viên
6 tháng 8 2021

Lời giải:
a.

Nếu $m=3$ thì pt trở thành:
$x^2+4x-5=0$

$\Leftrightarrow (x-1)(x+5)=0$

$\Leftrightarrow x=1$ hoặc $x=-5$

b.

Để pt có 2 nghiệm pb $x_1,x_2$ thì:

$\Delta'=4+m^2-4>0\Leftrightarrow m^2>0\Leftrightarrow m\neq 0$

PT có 2 nghiệm $(-2+m, -2-m)$

Khi đó:

\(x_2=x_1^3+4x_2^2\Leftrightarrow \left[\begin{matrix} -2+m=(-2-m)^3+4(-2+m)^2\\ -2-m=(-2+m)^3+4(-2-m)^2\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} -m^3+2m^2-29m+10=0\\ m^3-2m^2+29m+10=0\end{matrix}\right.\)

Nghiệm khá xấu, cảm giác đề cứ sai sai bạn ạ.

2 tháng 5 2023

\(\dfrac{1}{2}\left(x-2\right)+\dfrac{1}{3}\left(2-x\right)=x\\ \Leftrightarrow\dfrac{1}{2}\left(x-2\right)-\dfrac{1}{3}\left(x-2\right)=x\\ \Leftrightarrow\left(x-2\right).\left(\dfrac{1}{2}-\dfrac{1}{3}\right)=x\\ \Leftrightarrow\left(x-2\right).\left(\dfrac{3-2}{6}\right)=x\\ \Leftrightarrow\left(x-2\right).\dfrac{1}{6}=x\\ \Leftrightarrow\dfrac{1}{6}x-\dfrac{1}{3}-x=0\\ \Leftrightarrow\left(\dfrac{1}{6}-1\right)x=\dfrac{1}{3}\\ \Leftrightarrow\left(\dfrac{1-6}{6}\right)x=\dfrac{1}{3}\\ \Leftrightarrow\dfrac{-5}{6}x=\dfrac{1}{3}\\ \Leftrightarrow x=\dfrac{1}{3}:\left(-\dfrac{5}{6}\right)\\ \Leftrightarrow x=-\dfrac{2}{5}\)

Vậy \(x=-\dfrac{2}{5}\)

2 tháng 5 2023

x= \(\dfrac{7\pm\sqrt{37}}{3}\) nha