1.Chứng minh rằng nếu hai số dương có tổng không đổi thì tích của chúng lớn nhất khi và chỉ khi hai số đó bằng nhau
2. Áp dụng tìm max của
A=2x(16-2x) với 0<x<8
Mình cần gấp lắm nhưngg ai làm được bbài nào thì làm nhé!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi xy=k^2 với k là hằng số.
Ta có: [(x+y)/2]^2 >=xy <=>(x+y)^2 >= 4xy <=> (x+y) >= 2k =>min(x+y)=2k<=>x=y=k.
a)Xét hai số dương tích bằng a( với a là hằng số):
ta có (x+y)^2 >= 4xy=4a <=> x=y
Vì x,y >0 nên x+y nhỏ nhất <=> x=y.
Lời giải:
Giả sử $x,y$ là 2 số dương có $x+y=a$ không đổi.
Ta có:
$2xy=(x+y)^2-(x^2+y^2)=(x+y)^2-[(x-y)^2+2xy]$
$4xy=(x+y)^2-(x-y)^2\leq (x+y)^2$ do $(x-y)^2\geq 0$
$\Rightarrow xy\leq \frac{(x+y)^2}{4}=\frac{a^2}{4}$
Vậy $xy_{\max}=\frac{a^2}{4}$ khi $(x-y)^2=0$ hay $x=y$
Ta có đpcm.
1) Gọi hai số đỏ là x+n và x-n [tổng luôn bằng 2x].
Ta có: \(\left(x+n\right)\left(x-n\right)=x^2-n^2\le x^2\)
Dấu "=" xảy ra \(\Leftrightarrow n^2=0\) , nghĩa là 2 số bằng nhau (điều phải chứng minh).
2) Gọi hai số đó là x và y [tích là xy]
Ta có: \(\left(x+y\right)^2\ge4xy\)
Dấu "=" xảy ra \(\Leftrightarrow x=y\)
Vì x,y > 0 nên x + y nhỏ nhất \(\Leftrightarrow\left(x+y\right)^2\) nhỏ nhất \(\Leftrightarrow x=y\) (điều phải chứng minh)
+Gọi 2 số đó là a, b \(\left(a,b>0\right)\)
+Có: a, b ko đổi
+Cần cm: \(\left(a+b\right)_{min}\Leftrightarrow a=b\)
+Có: \(\left(a-b\right)^2\ge0\\ \Rightarrow a^2-2ab+b^2\ge0\\ \Rightarrow a^2+b^2\ge2ab\\ \Rightarrow a^2+2ab+b^2\ge4ab\\ \Rightarrow\left(a+b\right)^2\ge4ab\\ \Rightarrow a+b\ge2\sqrt{ab}\)
Có: \(\left(a+b\right)_{min}=2\sqrt{ab}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\a+b=2\sqrt{ab}\end{matrix}\right.\)
\(\Leftrightarrow a=b=\sqrt{ab}\left(đpcm\right)\)