Câu1:\(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}\)- \(\dfrac{\sqrt{6}-3}{\sqrt{2}-\sqrt{3}}\)
Câu2:\(\dfrac{\sqrt{2}}{\sqrt{3}-1}-\sqrt{\dfrac{3}{2}}\)
giải cụ thể giúp mk vớiiiii ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)\(=\left|\sqrt{3}-3\right|+\sqrt{\left(\sqrt{3}-1\right)^2}=3-\sqrt{3}+\left|\sqrt{3}-1\right|=3-\sqrt{3}+\sqrt{3}-1=2\)
a) \(=\left|\sqrt{3}-3\right|+\sqrt{\left(\sqrt{3}-1\right)^2}=3-\sqrt{3}+\sqrt{3}-1=2\)
b) \(=\dfrac{\sqrt{5}+2}{5-4}-\dfrac{\sqrt{5}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=\sqrt{5}+2-\sqrt{5}=2\)
\(M=\dfrac{3}{2}\cdot4\sqrt{2x}-\dfrac{1}{3}\cdot3\sqrt{2x}+\dfrac{2}{5}\cdot5\sqrt{2x}-4\sqrt{2x}=6\sqrt{2x}-\sqrt{2x}+2\sqrt{2x}-4\sqrt{2x}=3\sqrt{2x}\)
Câu 1,2 bạn đã đăng và có lời giải rồi
Câu 3:
\(=\frac{(\sqrt{3})^2+(2\sqrt{5})^2-2.\sqrt{3}.2\sqrt{5}}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{(\sqrt{3}-2\sqrt{5})^2}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{\sqrt{3}-2\sqrt{5}}{\sqrt{2}}\)
1) \(=2\sqrt{5}-3+5-2\sqrt{5}=2\)
2) \(=\dfrac{2\sqrt{3}-2-2\sqrt{3}-2}{3-1}=\dfrac{-4}{2}=-2\)
3) \(=\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\sqrt{5}+\sqrt{2}-\sqrt{5}+\sqrt{2}=2\sqrt{2}\)
bạn ơi sao câu 3 lại ra là \(\sqrt{\left(\sqrt{5+\sqrt{2}}\right)^2}\) vậy ạ, bạn giải thích giúp mình được không
Ta có: \(C=\dfrac{\sqrt{2+\sqrt{3}}}{2}:\left(\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{2}{\sqrt{6}}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}\right)\)
\(=\dfrac{\sqrt{4+2\sqrt{3}}}{2\sqrt{2}}:\left(\dfrac{\sqrt{6+3\sqrt{3}}}{2\sqrt{3}}-\dfrac{2\sqrt{2}}{2\sqrt{3}}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}\right)\)
\(=\dfrac{\sqrt{3}+1}{2\sqrt{2}}:\left(\dfrac{\sqrt{12+6\sqrt{3}}-4+\sqrt{4+2\sqrt{3}}}{2\sqrt{6}}\right)\)
\(=\dfrac{\sqrt{3}+1}{2\sqrt{2}}:\dfrac{3+\sqrt{3}-4+\sqrt{3}+1}{2\sqrt{6}}\)
\(=\dfrac{\sqrt{3}+1}{2\sqrt{2}}\cdot\dfrac{2\sqrt{6}}{2\sqrt{3}}\)
\(=\dfrac{\sqrt{3}+1}{2}\)
\(a,=\sqrt{5}\left(2\sqrt{5}-3\right)+3\sqrt{5}=10-3\sqrt{5}+3\sqrt{5}=10\\ b,=5-\sqrt{3}-\left(2-\sqrt{3}\right)=3\\ c,=\dfrac{2\left(\sqrt{5}-1\right)}{4}-\dfrac{2\left(3+\sqrt{5}\right)}{4}=\dfrac{2\sqrt{5}-2-6-2\sqrt{5}}{4}=\dfrac{-8}{4}=-2\)
Lời giải:
ĐKXĐ: $x\geq 0; x\neq 4$
\(A=\left[\frac{\sqrt{x}(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}+3)}-1\right]:\left[\frac{(3-\sqrt{x})(3+\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+3)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right]\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}+3}-1\right):\left(\frac{3-\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{-3}{\sqrt{x}+3}:\frac{-(\sqrt{x}-2)}{\sqrt{x}+3}=\frac{-3}{\sqrt{x}+3}.\frac{\sqrt{x}+3}{-(\sqrt{x}-2)}=\frac{3}{\sqrt{x}-2}\)
Câu 1:
\(=\sqrt{3}-\sqrt{2}-\sqrt{2}=3-2\sqrt{2}\)
cảm ơn nhiều ạ