K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 12 2021

Lời giải:
$A=1+(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2014}+3^{2015}+3^{2016})$

$=1+3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2014}(1+3+3^2)$
$=1+3.13+3^4.13+....+3^{2014}.13$

$=1+13(3+3^4+...+3^{2014})$ 

$\Rightarrow A-1\vdots 13(1)$

Mặt khác:
$A=1+(3+3^2+3^3+3^4)+....+(3^{2013}+3^{2014}+3^{2015}+3^{2016})$
$=1+3(1+3+3^2+3^3)+....+3^{2013}(1+3+3^2+3^3)$
$=1+(3+...+3^{2013})(1+3+3^2+3^3)$

$=1+40(3+....+3^{2013})$

$\Rightarrow A-1\vdots 5(2)$

Từ $(1); (2)$ mà $(5,13)=1$ nên $A-1\vdots (5.13)$ hay $A-1\vdots 65$

$\Rightarrow A$ chia $65$ dư $1$

22 tháng 12 2021

em cảm ơn ạ

 

9 tháng 7 2017

Ta có : a chia 2 dư 1 
⇒a có chữ số tận cùng là 1; 3; 5; 7; 5
a chia 5 dư 1 
⇒a có chữ số tận cùng là 1; 6
Từ 3 điều trên
⇒a có chữ số tận cùng là 1
a chia 7 dư 3 

9 tháng 7 2017

171 e nhé

16 tháng 11 2021

\(1,Y=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\\ Y=\left(1+3+3^2\right)\left(1+3^3+...+3^{96}\right)\\ Y=13\left(1+3^3+...+3^{96}\right)⋮13\\ 2,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2018}+3^{2019}\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{2019}\right)\\ A=4\left(1+3^2+...+3^{2019}\right)⋮4\\ 3,\Leftrightarrow2\left(x+4\right)=60\Leftrightarrow x+4=30\Leftrightarrow x=36\)

16 tháng 11 2021

Giúp mình cả bài 4,5 ở dưới được ko?

9 tháng 2 2023

\(B=3+3^2+3^3+...+3^{100}\)

\(=3+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)

\(=3+3^2\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)

\(=3+3^2.13+...+3^{98}.13\)

\(=3+13\left(3^2+...+3^{98}\right)\)

\(\Rightarrow B⋮̸13\)

\(\Rightarrow B:13\) dư 3.

9 tháng 2 2023

Các bạn giải nhanh giúp mình nhé. Mình cần gấp. Thanks!