K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2021

Theo công thức đường trung tuyến:

\(AM^2=\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}=\dfrac{9^2+11^2}{2}-\dfrac{10^2}{4}=76\Rightarrow AM=2\sqrt{19}\)

\(BN^2=\dfrac{AB^2+BM^2}{2}-\dfrac{AM^2}{4}=\dfrac{9^2+\dfrac{1}{4}.10^2}{2}-\dfrac{76}{4}=34\Rightarrow BN=\sqrt{17}\)

28 tháng 2 2021

đề có thiếu dữ kiện ko

NV
18 tháng 3 2021

\(BM=\dfrac{1}{2}BC=3\)

\(AM=\sqrt{AB^2+BM^2-2AB.BM.cos60^0}=\sqrt{19}\)

\(BN=\dfrac{\sqrt{2\left(AB^2+BM^2\right)-AM^2}}{2}=\dfrac{7}{2}\)

5 tháng 11 2017

tự vẽ hình nhé

a) ta có: tam giác ABC cân tại A

 ,mà MB=MC

=> AM LÀ đg phân giác

=> am VUÔNG GÓC VỚI BC

b) AM là đg phân giác (cmt)

=> AM =1/2 BC= 9:2=4.5(cm)

c) ta có tam giác AMB là tam giac vuông (AM vuông góc với BC )

mà N là trg điểm của AB 

=>MN là đg phân giác

=> MN=1/2AB=7.5:2=3.75(cm)

d)ta có: AB=AC=7.5(cm)

=>AB vuông với AC

mà MN vuông với AB 

=>MN//AC

TK DÙM MINK NHOA

14 tháng 4 2019

Áp dụng định lý Pitago trong tam giác vuông ABC ta có: (vì AB = AC)

Từ đây suy ra .

Lại có M là trung điểm của AC nên .

Gọi I là trung điểm của BC, G là giao điểm của AI và BM, suy ra G là trọng tâm tam giác ABC, suy ra BM = 3GM     (1).

Do ABC là tam giác vuông nên AI = IB = IC, do đó tam giác IAC là tam giác cân tại I, suy ra                          (2)

Lại có AM = MC (3).

    (4)

 Từ (2), (3) và (4) suy ra  (c.g.c)

Suy ra GM = NM (5). Từ (1) và (5) suy ra BM = 3NM (đpcm).

17 tháng 2 2019