cho tam giác abc cân tại a, điểm m và n lần lượt là trung điểm của cạnh bc.h là điểm đối xứng của điểm n qua m
a) Chứng minh ANBH là hình chữ nhật
b) Khi diện tích tam giác abc= 48cm2,tính diện tích hcn ANBH
c) Qua a kẻ đường thẳng d, d vuông góc với BA, d cắt tia BC lần lượt tại điểm P và Q. chứng minh HN^2=AP.AQ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(S_{ABC}=\dfrac{1}{2}\cdot8\cdot4=16\left(cm^2\right)\)
b: Xét tứ giác AHBE có
M là trung điểm chung của AB và HE
góc AHB=90 độ
=>AHBE là hình chữ nhật
c: Xét tứ giác ABFC có
H là trung điểm chung của AF và BC
AB=AC
=>ABFC là hình thoi
a: Xét tứ giác AHBK có
M là trung điểm của AB
M là trung điểm của HK
Do đó: AHBK là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBK là hình chữ nhật
b:
Xét tứ giác AKHC có
AK//HC
AK=HC
Do đó: AKHC là hình bình hành
c: Xét ΔABC có
N là trung điểm của AC
H là trung điểm của BC
Do đó: NH là đường trung bình
=>NH//AB và NH=AB/2
hay NH//AM và NH=AM
=>AMHN là hình bình hành
mà AM=AN
nên AMHN là hình thoi
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AQ và MN=AQ
hay AQNM là hình bình hành
mà \(\widehat{A}=90^0\)
nên AQNM là hình chữ nhật
a) Ta có: NB = NC (gt); ND = NA (gt)
⇒ Tứ giác ABDC là hình bình hành
có ∠A = 90o (gt) ⇒ ABDC là hình chữ nhật.
b) Ta có: AI = IC (gt); NI = IE (gt)
⇒ AECN là hình bình hành (hai đường chéo cắt nhau tại trung điểm mỗi đường).
mặt khác ΔABC vuông có AN là trung tuyến nên AN = NC = BC/2.
Vậy tứ giác AECN là hình thoi.
c) BN và DM là 2 đường trung tuyến của tam giác ABD; BN và MD giao nhau tại G nên G là trọng tâm tam giác ABD.
Tương tự G’ là trọng tâm của hai tam giác ACD
⇒ BG = BN/3 và CG’ = CN/3 mà BN = CN (gt) ⇒ BG = CG’
d) Ta có: SABC = (1/2).AB.AC = (1/2).6.6 = 24 (cm2)
Lại có: BG = GG’ = CG’ (tính chất trọng tâm)
⇒ SDGB = SDGG' = SDG'C = 1/3 SBCD
(chung đường cao kẻ từ D và đáy bằng nhau)
Mà SBCD = SCBA (vì ΔBCD = ΔCBA (c.c.c))
⇒SDGG' = 24/3 = 8(cm2)
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Ta có: ΔABC vuông tại A
mà AP là đường trung tuyến ứng với cạnh huyền BC
nên \(AP=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
b: Xét ΔABC có
P là trung điểm của BC
N là trung điểm của AC
Do đó: PN là đường trung bình của ΔABC
Suy ra: PN//AB và \(PN=\dfrac{AB}{2}\)
mà \(AM=\dfrac{AB}{2}\)
nên PN//AM và PN=AM
Xét tứ giác AMPN có
PN//AM
PN=AM
Do đó: AMPN là hình bình hành
mà \(\widehat{NAM}=90^0\)
nên AMPN là hình chữ nhật
c: Xét tứ giác APCE có
N là trung điểm của đường chéo AC
N là trung điểm của đường chéo PE
Do đó: APCE là hình bình hành
mà PE\(\perp\)AC
nên APCE là hình thoi
a) Xét tứ giác AEBM:
+ D là trung điểm của AB (gt).
+ D là trung điểm của ME (M là điểm đối xứng với E qua D).
\(\Rightarrow\) Tứ giác AEBM là hình bình hành (dhnb).
\(\Rightarrow\) AM // BE; AM = BE (Tính chất hình bình hành).
Mà BE = EC (E là trung điểm của BC).
\(\Rightarrow\) AM = EC.
Xét tứ giác ACEM:
+ AM = EC (cmt).
+ AM // EC (AM // BE).
\(\Rightarrow\) Tứ giác ACEM là hình bình hành (dhnb).
b) Xét tam giác ABC cân tại A:
AE là đường trung tuyến (E là trung điểm của BC).
\(\Rightarrow\) AE là đường cao (Tính chất tam giác cân).
Xét hình bình hành AEBM: \(\widehat{AEB}=\) \(90^o\) (AE là đường cao).
\(\Rightarrow\) Tứ giác AEBM là hình chữ nhật (dhnb).
c) Tam giác AEB vuông tại E (\(\widehat{AEB}=\) \(90^o\)).
\(\Rightarrow\) \(S_{\Delta AEB}=\dfrac{1}{2}AE.BE=\dfrac{1}{2}AE.\dfrac{1}{2}BC\) (do (E là trung điểm của BC).
\(Thay:\) \(\dfrac{1}{2}.8.\dfrac{1}{2}.12=24\left(cm^2\right).\)
a,
xét tam giác ABC có đường t/b DE:
=>DE//AC và DE=\(\dfrac{1}{2}\) AC
M là điểm đối xứng của DE:
=>DE+DM=AC
từ trên suy ra:
EM=AC và EM//AC
vậy ACEM là hình bình hành.
b,
Xét tam giác ABC là tam giác cân :
=>AB=AC
mà AC = ME
nên: AB =ME (1)
lại có: AM=MB , MD=DE(2)
từ (1) và (2) suy ra:
AEBM là hình chữ nhật.
c,
Xét tam giác ABC có BE=EC suy ra:
BE=EC=\(\dfrac{1}{2}BC\)=\(\dfrac{12}{2}=6cm\)
vì AEBM là hình chữ nhật nên:
góc AEB = 90\(^o\)<=> AEB là tam giác vuông
vậy \(S_{AEB}=\dfrac{AE.BE}{2}=\dfrac{8.6}{2}=24cm^2\)
a: Xét tứ giác ANBH có
M là trung điểm của AB
M là trung điểm của NH
Do đó: ANBH là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên ANBH là hình chữ nhật
cho em sửa đề lại là m và n lần lượt là trung điểm của cạnh AB và BC