K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có:

△ ABE =  △ CDF (g.c.g) ⇒ S A B E = S C D F  (l)

△ AED =  △ CFB (g.c.g) ⇒ S A E D = S C F B (2)

Từ (1) và (2) ⇒  S A B E + S C F B = S C D F + S A E D

Hay  S A B C F E = S A D C F E

10 tháng 12 2017

có tam giác ABD=BCD (c.c.c) suy ra CK=AH 

xét tứ giác AKCH có ck=ah cmt  hkc=ahk=90 độ ( so le trong ) 

-> ah//kc -> AKCH là hình bình hành (dhnb)

-> CH=AK xét tam giác ADK và BCH có BC=AD CH=AK cmt có góc ADH= góc CBK so le trong

 ->  ADK=BCH (c.g.c) xét tam giác ABH VÀ CKH = nhau (c.g.c)-> diện tích=nhau 

( chứng minh tượng tự ) - Ta có đa giác ABCH = AHB+CHD     

  và ADCK=AKD+CKD  MÀ  AHB=Ckd cmt . ADK = BCH cmt 

->  tứ giác ABCH=ADCK

10 tháng 12 2017

A D B C H K 1 2 2 1

Xét 2 tam giác vuông HDA và KBC có :

AD = BC ( ABCD - hbh )

\(\widehat{D1}=\widehat{B1}\)( so le trong , AD // Bc )

\(\Rightarrow\)\(\Delta HDA=\Delta KBC\)( ch-gn )

\(\Rightarrow\)Diện tích tam giác HDA = diện tích tam giác KBC ( 1 )

Xét t/g HDC và t/g KBA :

CD = AB ( gt )

\(\widehat{D2}=\widehat{B2}\)( so le trong , CD // AB )

HD = KB ( t/g HDA = t/g KBC )

\(\Rightarrow\)\(\Delta HDC=\Delta KBA\)( c-g-c )

\(\Rightarrow\)Diện tích tam giác HDC = diện tích tam giác KBA ( 2 )

Diện tích ABCH = diện tích KBA + diện tích AK Ch + diện tích KBC ( 3 )

Diện tích ADCK = diện tích HDC + diện tích AKCH + diện tích HDA ( 4 )

Từ ( 1 ) ; ( 2 ) ; ( 3 ) : ( 4 ) suy ra diện tích đa giác ABCH = diện tích ADCK ( đpcm )

5 tháng 1 2020

a, Ta có ∆ABE = ∆ADF(g.c.g) => AE = AF

b, Ta có: ∆AKF ~ ∆CAF ( F ^ chung và  F A K ^ = F C A ^ = 45 0 )

=> A F H F = C F A F =>  A F 2 = K F . C F

c, S A E F = 93 2 c m 2

d, Ta có: AE.AJ=AF.AJ=AD.FJ

=>  A E . A J F J = AD không đổi