P LÀ SỐ NGUYÊN TỐ LỚN HƠN 3
P;P+D;P+2D LÀ CÁC SỐ NGUYÊN TỐ VẬY D CHIA CHO 6 DƯ LÀ BAO NHIÊU?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ta có:p là số nguyên tố,p>3
=>p\(⋮̸\)3
=>p chia 3 dư 1 hoặc p chia 3 dư 2
=>p=3k+1 hoặc p=3k+2(k\(\in\)N*)
TH1:p=3k+1(k\(\in\)N*)
=>p2+3p+2=(3k+1)2+3.(3k+1)+2=9k2+1+9k+3+2=9k2+9k+3+2+1=9k2+9k+6=3.(3k2+3k+2)\(⋮\)3
Mà p2+3p+2 lớn hơn 3 (do p>3)
=>p2+3p+2 là hợp số
p=3k+1(thỏa mãn)
TH2:p=3k+2(k\(\in\)N*)
=>p2+3p+2=(3k+2)2+3.(3k+2)+2=9k2+4+9k+6+2=9k2+9k+4+6+2=9k2+9k+12=3.(3k2+3k+4)\(⋮\)3
Mà p2+3p+2 >3(do p>3)
=>p2+3p+2 là hợp số
Vậy p là số nguyên tố,p>3 thì p2+3p+2 là hợp số
Chúc bn học tốt
BÀi 4 :VÌ p và 5 là 2 số nguyên tố cùng nhau nên p không chia hết cho 5
Ta có P8n+3P4n-4 = p4n(p4n+3) -4
Vì 1 số không chia hết cho 5 khi nâng lên lũy thừa 4n sẽ có số dư khi chia cho 5 là 1
( cách chứng minh là đồng dư hay tìm chữ số tận cùng )
suy ra : P4n(P4n+3) -4 đồng dư với 1\(\times\)(1+3) -4 = 0 ( mod3) hay A chia hết cho 5
Bài 5
Ta xét :
Nếu p =3 thì dễ thấy 4P+1=9 là hợp số (1)
Nếu p\(\ne\)3 ; vì 2p+1 là số nguyên tố nên p không thể chia 3 dư 1 ( vì nếu p chia 3 duw1 thì 2p+1 chia hết cho 3 và 2p+1 lớn hơn 3 nên sẽ là hợp số trái với đề bài)
suy ra p có dạng 3k+2 ; 4p+1=4(3k+2)+1=12k+9 chia hết cho 3 và 4p+1 lớn hơn 3 nên là 1 hợp số (2)
Từ (1) và (2) suy ra 4p+1 là hợp số
Đáp án: B
Y có electron ở mức năng lượng 3p và có một electron ở lớp ngoài cùng
→ Cấu hình electron của Y là 1s22s22p63s23p64s1 → Y là kim loại.
X có electron ở mức năng lượng cao nhất là 3p theo bài ra thì nó chỉ có thể kém Y 2 electron
→ Cấu hình electron của X là 1s22s22p63s23p5 → X là phi kim.
→ Chọn B.
Đáp án B
phi kim và kim loại
Nguyên tử nguyên tố Y có electron ở mức năng lượng 3p và có 1 electron ở lớp ngoài cùng, suy ra cấu hình electron của Y là 1s22s22p63s23p64s1. Nguyên tử X có electron ở mức năng lượng cao nhất là 3p và X, Y có số electron hơn kém nhau là 2, suy ra cấu hình electron của X là 1s22s22p63s23p5. Vậy X là phi kim vì có 5 electron ở lớp ngoài cùng, Y là kim loại vì có 1 electron ở lớp ngoài cùng
ta có : 2018p \(\equiv\)2p (mod 3)
Vì là SNT > 5 => p lẻ
=> 2p \(\equiv\)2 (mod 3)
2017q \(\equiv\)1 (mod 3)
=> 2018p - 2017q \(\equiv\)2 - 1 = 1 (mod 3)
Vậy 2018p - 2017q chia 3 dư 1
b) xét số dư khi chia p cho 3 => p có 2 dạng 3k + 1 hoặc 3k + 2
+ p = 3k + 1 => 3p5 \(⋮\)3 ; 5p3 \(\equiv\)2 (mod 3) ; 7p \(\equiv\)1 (mod 3) => (3p5 + 5p3 + 7p ) \(⋮\)3
+ p = 3k + 1 => 3p5 \(⋮\)3 ; 5p3 \(\equiv\)1(mod 3) ; 7p \(\equiv\)2 (mod 3) => (3p5 + 5p3 + 7p ) \(⋮\)3
Vậy 3p5 + 5p3 + 7p \(⋮\)3 (1)
Xét số dư khi chia p cho 5 => p có 4 dạng 5k+1;5k+2;5k+3;5k+4
+ p = 5k + 1 => 3p5 \(\equiv\)3 (mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)7 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5
+ p = 5k + 2 => 3p5 \(\equiv\)1 (mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)4 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5
+ p = 5k + 3 => 3p5 \(\equiv\)4 (mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)1 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5
+ p = 5k + 4 => 3p5 \(\equiv\) 2(mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)3 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5
Vậy 3p5 + 5p3 + 7p \(⋮\)5 (2)
Từ (1) và (2) và (3;5) = 1 => 3p5 + 5p3 + 7p \(⋮\)15
=> \(\frac{3p^5+5p^3+7b}{15}\)là số nguyên (đpcm)