\(M=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+\frac{1}{4}.\left(1+2+3+4\right)+...+\frac{1}{2014}.\left(1+2+3+...+2014\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{100^2}-1\right)\)( có 2013 thừa số )
\(A=\left(-\frac{3}{2^2}\right).\left(-\frac{8}{3^2}\right).\left(-\frac{15}{4^2}\right).....\left(-\frac{\text{4056196}}{2014^2}\right)\)
\(-A=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{4056196}{2014^2}=\frac{1.3.2.4.3.5....2013.2015}{2.2.3.3.4.4.....2014.2014}\)
\(-A=\frac{\left(1.2.3...2013\right).\left(3.4.5.6...2015\right)}{\left(2.3.4.5....2014\right).\left(2.3.4.5...2014\right)}=\frac{1.2015}{2.2014}=\frac{2015}{4028}\)
\(A=-\frac{2015}{4028}\)
Vậy.....
-A=(\(1-\frac{1}{2^2}\)) . (\(1-\frac{1}{3^2}\))......(\(1-\frac{1}{2014^2}\))
-A= \(\frac{3}{4}\). \(\frac{8}{9}\). ...... \(\frac{4056195}{4056196}\)
-A= \(\frac{1.3.2.4.......2013.2015}{2.2.3.3.......2.14.2014}\)
-A= \(\frac{\left(1.2.3...2013\right)\left(3.4.5...2015\right)}{\left(2.3.4...2014\right)\left(2.3.4...2014\right)}\)
-A= \(\frac{2015}{2014.2}\)
-A=\(\frac{2015}{4028}\)
Ta có:\(\left(x-1\right)\left(x+1\right)=x\left(x-1\right)+x-1^2=x^2-x+x-1=x^2-1\)
Áp dụng:\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{2014^2}-1\right)\)
\(=\frac{2^2-1}{2^2}\cdot\frac{3^2-1}{3^2}\cdot...\cdot\frac{2014^2-1}{2014\cdot2014}\)
\(=\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot...\cdot\frac{2013\cdot2015}{2014^2}\)
\(=\frac{1}{2}\cdot\frac{2015}{2014}=\frac{2015}{4028}\)
\(A=\left(\frac{1}{1+2}\right).\left(\frac{1}{1+2+3}\right).....\left(\frac{1}{1+2+3+...+2014}\right)\)
\(A=\left(\frac{1}{\frac{2.\left(2+1\right)}{2}}\right).\left(\frac{1}{\frac{3.\left(3+1\right)}{2}}\right).....\left(\frac{1}{\frac{2014.\left(2014+1\right)}{2}}\right)\)
\(A=\frac{1}{\frac{2.3}{2}}.\frac{1}{\frac{3.4}{2}}.\frac{1}{\frac{4.5}{2}}.....\frac{1}{\frac{2014.2015}{2}}\)
\(A=\frac{2}{2.3}.\frac{2}{3.4}.\frac{2}{4.5}.....\frac{2}{2014.2015}\)
Đến đây thì không tính được nữa , có thể bạn chép nhầm dấu cộng thành dấu nhân rồi.
Nếu đổi dấu nhân thành dấu cộng, ta được:
\(A=\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2014.2015}\)
\(A=2.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{2014.2015}\right)\)
\(A=2.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{2014}-\frac{1}{2015}\right)\)
\(A=2.\left(\frac{1}{3}-\frac{1}{2015}\right)\)
\(A=2.\frac{2012}{6045}\)
\(A=\frac{4024}{6045}\)
có dạng \(1-\frac{1}{a^2}=\frac{\left(a-1\right)\left(a+1\right)}{a^2}\) rút gon hết còn \(\frac{1}{4028}\)
\(A=\left(\frac{-1}{2}\right).\left(\frac{-1}{2}\right)^2.\left(\frac{-1}{2}\right)^3.\left(\frac{-1}{2}\right)^4.....\left(\frac{-1}{2}\right)^{2014}\)
\(=\left[\left(\frac{-1}{2}\right).\left(\frac{-1}{2}\right)^3.....\left(\frac{-1}{2}\right)^{2013}\right].\left[\left(\frac{-1}{2}\right)^2.\left(\frac{-1}{2}\right)^4.....\left(\frac{-1}{2}\right)^{2014}\right]\)
mà thừa số thứ nhất có dấu âm (vì lũy thừa bậc lẻ của một số âm luôn luôn âm) và thừa số thứ hai có dấu dương (vì lũy thừa bậc chẵn của mọi số luôn luôn dương)
nên A có dấu âm
ta gọi biểu thức đó là A
A=1/2.2+1/3.3+...+1/2014.2014
=> A <1/1.2+1/2.3+...+1/2013/2014
=>A<1-1/2+1/2-1/3+1/3-1/4+....+1/2013-1/2014
=>A<1-1/2014
=>A<2013/2014
\(M=1+1,5+2+2,5+...+1007,5\)
\(M=\frac{1007,5+1}{2}.2014=1015559,5\)