K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2021

Xét n=1 ta có n4+4n=5 thỏa mãn

Xét n>1. Nếu n chẵn thì n4+4n chia hết cho 2 và n4+4n>2 nên n4+4n là hợp số

Nếu n lẻ ta đặt n=2k+1(k thuộc N) ta có:

n4+4n=(n2)2+(4k.2)2=(n2+4k.2)2-2n2+4k.2

=(n2+4k.2)2-(2n.2k)2=(n2-2n.2k+4k.2)(n2+2n.2k+4k.2)

Tích cuối là 1 hợp số

Vậy n=1 thỏa mãn bài toán

6 tháng 6 2018

Ta có: (3n- 4) + (5n – 3) = 8n– 7 là số lẻ, suy ra: trong hai số trên phải có một số chẵn và một số lẻ.
– Nếu 3n– 4 chẵn thì 3n– 4 = 2 ⇔ n = 2 ⇒ 4n– 5 = 3 và 5n– 3 = 7 đều là các số nguyên tố.
– Nếu 5n– 4 chẵn thì 5n– 3 = 2 ⇔ n = 1 ⇒3n – 4 = -1 (loại)
Vậy n= 2 là thỏa mãn.

16 tháng 1 2022

n=0 hoặc n=1.

16 tháng 1 2022

phân tích đa thức thành nhân tử:

(2n2-2n+1)(2n2+2n+1)