Cho a,b,c thỏa mãn:
\(a^2+b^2+c^2=\frac{b^2-c^2}{a^2+8}+\frac{c^2-a^2}{b^2-7}+\frac{a^2-b^2}{c^2+5}\)
Tính giá trị của M=30a+4b+1975c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nữ thần hòa bình và tình yêu 2 phút trước (20:43)
đồng ý với Gửi trả lời Hủy
Nguyên Đinh Huynh Ronaldo 2 phút trước (20:40)
khó
Đúng 0
Lê Thanh Bình 2 phút trước (20:40)
Các bạn không trả lời thì thôi. Sao lại ăn nói như vậy
Đúng 0
Lương Thanh Phương 4 phút trước (20:38)
2 năm nữa may ra em còn giải được
Đúng 0
Đúng 0
Nguyên Đinh Huynh Ronaldo 5 phút trước (20:40)
khó
Đúng 0
Lê Thanh Bình 5 phút trước (20:40)
Các bạn không trả lời thì thôi. Sao lại ăn nói như vậy
Đúng 0
\(M=\frac{\left(a+1\right)^2+2a}{a\left(a+1\right)}+\frac{\left(b+1\right)^2+2b}{b\left(b+1\right)}+\frac{\left(c+1\right)^2+2c}{c\left(c+1\right)}\)
\(M=\frac{a+1}{a}+\frac{b+1}{b}+\frac{c+1}{c}+2\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)
\(M=3+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+2\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)
\(M\ge3+\frac{9}{a+b+c}+2\left(\frac{9}{a+b+c+3}\right)\ge3+3+3=9\)
Dấu "=" xảy ra khi a=b=c=1
theo bài ra ta có:
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
=> \(\frac{abc}{c\left(a+b\right)}=\frac{abc}{a\left(b+c\right)}=\frac{abc}{b\left(c+a\right)}\)
=> \(\frac{abc}{ca+cb}=\frac{abc}{ab+ac}=\frac{abc}{bc+ba}\)
vì a,b,c khác 0 => ca+cb = ab+ac = bc+ba
=> a = b = c
ta có:
\(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
vậy M = 1