CÂU 11: Cho tứ giác ABCD, AC=BD, AC thuộc BD ; Gọi M, N ,P, Q lần lượt là trung điểm của AB, BC, CD, DA. Khi đó MNPQ là hình gì ? Lời giải ?
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
GV
0
CT
1
18 tháng 7 2018
tự vẽ hình nha bạn
gọi giao điểm của AC và BD la O
Ta có BO + DO = BD
mà diện h của ΔACD là: \(\frac{AC\cdot DO}{2}=\frac{8\cdot DO}{2}\)
diện h của ΔACB là: \(\frac{AC\cdot BO}{2}=\frac{8\cdot BO}{2}\)
nên diện h của tứ gái ABCD là \(\frac{8\cdot DO}{2}+\frac{8\cdot BO}{2}=\frac{8\cdot DO+8\cdot BO}{2}=\frac{8\left(DO+BO\right)}{2}=4\cdot5=20\left(cm\right)\)
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của DA
P là trung điểm của DC
Do đó: QP là đường trung bình của ΔADC
Suy ra: QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MNPQ là hbh