Cho hình thoi MNPQ có góc M bằng 600. Gọi A, B, C, D lần lượt là trung điểm của MN, MQ, PQ, PN. Gọi I là giao điểm của MP và NQ.
a. Tứ giác ABCD là hình gì?
b. Chứng minh Tam giác NBC là tam giác đều.
c. Gọi E là điểm đối xứng của B qua A, gọi F là trung điểm của NB.
Chứng minh E đối xứng với Q qua F.
d. Chứng minh IC vuông góc với NB.
e. Cho điểm S di chuyển trên MP. Tìm vị trí của điểm S để SB +SQ nhỏ nhất.
a: Xét ΔMNQ có
A là trung điểm của MN
B là trung điểm của MQ
Do đó: AB là đường trung bình của ΔMNQ
Suy ra: AB//NQ và AB=NQ/2(1)
Xét ΔNPQ có
C là trung điểm của QP
D là trung điểm của NP
Do đó: CD là đường trung bình của ΔNPQ
Suy ra: CD//NQ và CD=NQ/2(2)
Từ (1) và (2) suy ra ABCD là hình bình hành