K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2021

\(2x^2+4y^2+4xy-6x+100=\left(x^2+4xy+4y^2\right)+\left(x^2-6x+9\right)+91=\left(x+2y\right)^2+\left(x-3\right)^2+91\ge91>0\)

22 tháng 12 2021

\(2x^2-4xy+2y^2\\ =2\left(x^2-2xy+y^2\right)\\ =2\left(x-y\right)^2\)

22 tháng 12 2021

a) 2x2-4xy+2y2
= 2x2-2xy-2xy+2y2
= 2x(x-y)-2y(x-y)
= (2x-2y)(x-y)
b) x2+4xy+4y2-9
= (x+2y)2-32
= (x+2y-3)(x+2y+3)
c) x4-x3y+x-y
= x3(x-y)+(x-y)
= (x3+1)(x-y)

6 tháng 12 2021

Ta có: \(2x^2+4y^2+4xy-6x+10\)\(=x^2+4xy+4y^2+x^2-6x+9+1\)\(=\left(x+2y\right)^2+\left(x-3\right)^2+1\)

Vì \(\left(x+2y\right)^2\ge0;\left(x-3\right)^2\ge0\)\(\Rightarrow\left(x+2y\right)^2+\left(x-3\right)^2\ge0\)\(\Leftrightarrow\left(x+2y\right)^2+\left(x-3\right)^2+1\ge1>0\)\(2x^2+4y^2+4xy-6x+10>0\left(đpcm\right)\)

28 tháng 6 2019

a) \(-\left(x^2-6x+10\right)=-\left(x^2-6x+9+1\right)=-\left[\left(x-3\right)^2+1\right]\le-1< 0\forall x\)

BĐT đúng

b) \(x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

BĐT đúng

c)Dấu "=" ko xảy ra???

\(=\left(4x^2+2.2x.y+y^2\right)+2\left(2x+y\right)+1+2\)

\(=\left(2x+y\right)^2+2.\left(2x+y\right).1+1+1\)

\(=\left(2x+y+1\right)^2+1\ge1>0\) (đpcm)

18 tháng 9 2019

a. −x2 + 6x - 10

= −(x2 − 6x) − 10

= −(x2 − 2.x.3 + 32 − 9) − 10

= −(x − 3)2 + 9 − 10

= −(x − 3)2 −1

(x − 3)2 ≥ 0 ∀ x ⇒ −(x − 3)2 ≤ 0 ⇒ −(x − 3)2 −1 ≤ −1

Vậy −(x − 3)2 −1 < 0 ⇒ −x2 + 6x - 10 luôn âm với mọi x

25 tháng 6 2018

Giải:

a) \(x^2+xy+y^2+1\)

\(=x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)

\(=\left(x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2\right)+\dfrac{3y^2}{4}+1\)

\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\ge1>0;\forall x\)

Vậy ...

26 tháng 6 2018

Hắc Hường BĐT ở đây. Cj nghĩ cấp 2 chỉ học 1 số loại này thôi

1.BĐT Cauchy

\(A+B\ge2\sqrt{AB}\) (Áp dụng cho 2 số k âm)

\(A+B+C\ge3\sqrt[3]{ABC}\) (Áp dụng cho 3 số k âm )

2.BĐT Bunhiacopxki

\(\left(Ax+By\right)^2\le\left(A^2+B^2\right)\left(x^2+y^2\right)\)

3.BĐT Mincopxki

\(\sqrt{A^2+x^2}+\sqrt{B^2+y^2}\ge\sqrt{\left(A+B\right)^2+\left(x+y\right)^2}\)

4.BĐT Chebyshev

Với A>B, x>y thì

\(\left(A+B\right)\left(x+y\right)\le2\left(ax+by\right)\)

Vs 3 sô thì bên vế phải thay 2 bằng 3

5.BĐT Benuli

\(\left(1+h\right)^n\ge1+nh\)

6.BĐT Holder

Với a,b,c,x,y,z,m,n,p là sô thực dương

\(\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)\ge\left(axm+byn+czp\right)^3\)

7.BĐT Sơ-vác-sơ

\(\dfrac{a_1^2}{b_1}+\dfrac{a^2_2}{b_2}+...+\dfrac{a^2_n}{b_n}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{b_1+b_2+...+b_n}\)

8. \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

9. \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)

10. \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)

11. \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\ge4xy\)

12. \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)13. \(a^3+b^3\ge a^2b+ab^2\)

14. \(\dfrac{a^3}{b}\ge a^2+ab-b^2\)( Ít áp dụng )

15. \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(\left|a\right|-\left|b\right|\le\left|a-b\right|\)

\(\left|\dfrac{x}{y}\right|+\left|\dfrac{y}{x}\right|\ge\left|\dfrac{x}{y}+\dfrac{y}{x}\right|\ge2\)

16. \(a^2+b^2+c^2\ge ab+ac+bc\)

\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\)

25 tháng 7 2022

4x2+4y2+4xy>6y-4(1)

⇔4x2+4y2+4xy-6y+4>0(2)

⇔4x2+4xy+y2+3y2-6y+3+1>0

⇔(2x+y)2+3(y2-2y+1)+1>0

⇔(2x+y)2+3(y-1)2+1>0

+)(2x+y)2≥0

3(y-1)2≥0

→(2x+y)2+3(y-1)2≥0

→(2x+y)2+3(y-1)2+1≥1>0

BĐT(2) luôn đúng

 BĐT(1) luôn đúng

Vậy 

25 tháng 7 2022

Ta có 4x^2 + 4y^2 + 6x + 3 \ge 4xy

\Leftrightarrow (x^2 - 4xy + 4y^2) + 3(x^2 + 2x +1) \ge 0

\Leftrightarrow (x-2y)^2 + 3(x +1)^2 \ge 0 (luôn đúng với mọi xy).

Vậy với mọi xy ta có 4x^2 + 4y^2 + 6x + 3 \ge 4xy.