Cho 9x2+4y2=20xy và 2y<3x<0. Tính giá trị của biểu thức A=(3x-2y)/(3x+2y)
Giải đúng tick nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Ta có: 9 x 2 − 4 y 2 = 5 ⇔ 3 x + 2 y 3 x − 2 y = 5 ⇔ 3 x − 2 y = 5 3 x + 2 y
Khi đó: log m 3 x + 2 y = log 3 3 x − 2 y = 1
⇔ log m 3 x + 2 y − log 3 5 3 x + 2 y = 1
⇔ log m 3 x + 2 y + log 3 3 x + 2 y − log 3 5 = 1 ⇔ log m 3. log 3 3 x + 2 y + log 3 3 x + 2 y = log 3 15 ⇔ log 3 3 x + 2 y 1 + log m 3 = log 3 15
Vì 3 x + 2 y ≤ 5
nên log 3 3 x + 2 y ≤ log 3 5 ⇒ log 3 15 1 + log m 3 ≤ log 3 5
⇔ log 3 15 log 3 5 ≤ 1 + log m 3
⇔ log m 3 ≥ log 5 15 − 1 = log 5 3 ⇔ m ≤ 5.
2) 9x2+ 12x+ 4
<=>(3x)2+ 2.3x.2+ 22 <=>(3x+ 2)2
3) 4x4+ 20x2+ 25
<=>(2x2)2+ 2.2x2.5+ 52 <=>(2x2+5)2
4) 25x2- 20xy+ 4y2
<=> (5x)2- 2.5x.2y+ (2y)2<=> (5x-2y)2
5) 9x4- 12x2y+ 4y2
<=> (3x2)2- 2.3x2.2.y+ (2y)2<=> (3x2- 2y)2
6) 4x4- 16x2y3+ 16y6
<=> (2x2)2- 2.2x2.4y3+ (4y3)2<=> (2x2- 4y3)2
7) 9x4- 12x5+ 4x6
<=> (3x2)2- 2.3x2.2x3+ (2x3)2<=> (3x2- 2x3)2
\(A=x^3-8-128-x^3=-136\\ B=8x^3+27y^3-27x^3+8y^3=-19x^3+35y^3\)
\(A=\left(x-2\right)\left(x^2+2x+4\right)-\left(128+x^3\right)=x^3-8-128-x^3=-136\)
\(B=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(3x-2y\right)\left(9x^2+6xy+4y^2\right)=8x^3+27y^3-27x^3+8y^3=-19x^3+35y^3\)
$A=x^2+y^2-6x+4y+20=(x^2-6x+9)+(y^2+4y+4)+7$
$=(x-3)^2+(y+2)^2+7\geq 0+0+7=7$
Vậy $A_{\min}=7$. Giá trị này đạt tại $(x-3)^2=(y+2)^2=0$
$\Leftrightarrow x=3; y=-2$
---------------------
$B=9x^2+y^2+2z^2-18x+4z-6y+30$
$=(9x^2-18x+9)+(y^2-6y+9)+(2z^2+4z+2)+10$
$=9(x^2-2x+1)+(y^2-6y+9)+2(z^2+2z+1)+10$
$=9(x-1)^2+(y-3)^2+2(z+1)^2+10\geq 10$
Vậy $B_{\min}=10$. Giá trị này đạt tại $(x-1)^2=(y-3)^2=(z+1)^2$
$\Leftrightarrow x=1; y=3; z=-1$
$C=x^2+y^2+z^2-xy-yz-xz+3$
$2C=2x^2+2y^2+2z^2-2xy-2yz-2xz+6$
$=(x^2-2xy+y^2)+(y^2-2yz+z^2)+(x^2-2xz+z^2)+6$
$=(x-y)^2+(y-z)^2+(z-x)^2+6\geq 6$
$\Rightarrow C\geq 3$
Vậy $C_{\min}=3$. Giá trị này đạt tại $x-y=y-z=z-x=0$
$\Leftrihgtarrow x=y=z$
--------------------------------------
$D=5x^2+2y^2+4xy-2x+4y+2021$
$=2(y^2+2xy+x^2)+3x^2-2x+4y+2021$
$=2(x+y)^2+4(x+y)+3x^2-6x+2021$
$=2(x+y)^2+4(x+y)+2+3(x^2-2x+1)+2016$
$=2[(x+y)^2+2(x+y)+1]+3(x^2-2x+1)+2016$
$=2(x+y+1)^2+3(x-1)^2+2016\geq 2016$
Vậy $D_{\min}=2016$ khi $x+y+1=x-1=0$
$\Leftrightarrow x=1; y=-2$
Ta có 25 x 2 – 20 x y + 4 y 2 = ( 5 x ) 2 – 2 . 5 x . 2 y + ( 2 y ) 2 = ( 5 x – 2 y ) 2
Đáp án cần chọn là: A
\(a,\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
\(b,\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(c,\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
a,9x^2+y^2+2z^2−18x+4z−6y+20=0
⇔9(x−1)^2+(y−3)^2+2(z+1)^2=0
⇔x=1;y=3;z=−1
b,5x^2+5y^2+8xy+2y−2x+2=0
⇔4(x+y)2+(x−1)2+(y+1)2=0
⇔x=−y;x=1y=−1⇔x=1y=−1
c,5x^2+2y^2+4xy−2x+4y+5=0
⇔(2x+y)^2+(x−1)^2+(y+2)^2=0
⇔2x=−y;x=1;y=−2
⇔x=1;y=−2
d,x^2+4y^2+z^2=2x+12y−4z−14
⇔(x−1)^2+(2y−3)^2+(z+2)^2=0
⇔x=1;y=3/2;z=−2
e: Ta có: x^2−6x+y2+4y+2=0
⇔x^2−6x+9+y^2+4y+4−11=0
⇔(x−3)^2+(y+2)^2=11
Dấu '=' xảy ra khi x=3 và y=-2
ta có
9x2+12xy+4y2=32xy
=>(3x+2y)2=32xy =>3x+2y=\(\sqrt{32xy}\)
mặt khác
9x2-12xy+4y2=8xy
=>(3x-2y)2=8xy =>3x-2y=\(\sqrt{8xy}\)
vậy \(\frac{3x-2y}{3x+2y}=\frac{\sqrt{8xy}}{\sqrt{32xy}}\)
=0,5
đề này có trong violimpic vòng 15
hôm qua mình đi thi có gặp bài này ko bt sai hay đúng nữa
mà hình như mình làm sai dấu