Cho hình bình hành ABCD, O là giao điểm của hai đường chéo AC và BD. Gọi E và F theo thứ tự là trung điểm DB và OD a, Chứng minh AE song song với CF b, Gọi K là giao điểm của AE và DC chứng minh KC bằng 2DK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O là giao điểm của hai đường chéo AC,BD(gt)
=> AO=OC, OD=OB (vì ABCD là hình bình hành)
Lại có;
E là trung điểm của OD(gt)
=> OE=1/2.OD
F là trung điểm của OB(gt)
=> OF=1/2.OB
Mà OD=OB (cmt)
=> OE=OF
Tứ giác AFCE có: OA=OC(cmt) và OE=OF(cmt)
=> O là giao điểm của hai đường chéo AC,EF cắt nhau tại trung điểm mỗi đoạn
=> AFCE là hình bình hành
=> AE//CF (vì AE, CF là hai cạnh đối nhau)
Có AE//CF (cmt)
=> EK// CF (vì K thuộc AE)
Từ O vẽ đường thẳng cắt CD tại H sao cho OH//EK//CF
Xét tam giác DOH có: E là trung điểm của OD
EK//OH (theo cách vẽ đường thẳng OH)
=> K là trung điểm của DH
=> DK=KH (1)
Xét hình thang EKCF có: O là trung điểm của EF (theo câu a)
OH//EK//CF (theo cách vẽ đường thẳng OH)
=> H là trung điểm của KC
=> KH=HC (2)
Từ (1) và (2) => DK=KH=HC
Lại có: KC=KH+HC => KC= DK+DK (vì DK=KH=HC)
=> KC=2DK => DK=1/2KC
a. Có O là giao điểm của hai đường chéo AC,BD(gt)
=> AO=OC, OD=OB (vì ABCD là hình bình hành)
Lại có E là trung điểm của OD(gt) => OE=1/2.OD
F là trung điểm của OB(gt) => OF=1/2.OB
Mà OD=OB (cmt)
=> OE=OF
Tứ giác AFCE có: OA=OC(cmt) và OE=OF(cmt)
=> O là giao điểm của hai đường chéo AC,EF cắt nhau tại trung điểm mỗi đoạn
=> AFCE là hình bình hành
=> AE//CF (vì AE, CF là hai cạnh đối nhau)
b. Có AE//CF (theo câu a)
=> EK// CF (vì K thuộc AE)
Từ O vẽ đường thẳng cắt CD tại H sao cho OH//EK//CF
Xét tam giác DOH có: E là trung điểm của OD
EK//OH (theo cách vẽ đường thẳng OH)
=> K là trung điểm của DH
=> DK=KH (1)
Xét hình thang EKCF có: O là trung điểm của EF (theo câu a)
OH//EK//CF (theo cách vẽ đường thẳng OH)
=> H là trung điểm của KC
=> KH=HC (2)
Từ (1) và (2) => DK=KH=HC
Lại có: KC=KH+HC => KC= DK+DK (vì DK=KH=HC)
=> KC=2DK => DK=1/2KC
(tự vẽ hình nhé)
a) OD = OB (gt) mà ED = EO = OD/2 ; FO = FB = OB/2
=> ED = EO = FO = FB
Ta có: OA = OC (gt) và OE = OF (cmt) => tứ giác AECF là hbh => AE // CF
b) Kẻ OS // AK (S thuộc DC)
Tg DOS: EO = ED (cmt) ; OS // EK (do OS //AK) => KD = KS. (1)
Hình thang EKCF: OE = OF (cmt) ; OS // EK (cmt) => KS = SC (2)
Từ (1) và (2) => KD = KS = SC (*)
Mặt khác: KS + SC = KC => 2 * KS = KC (**)
Từ (*) và (**) => đpcm
Ta có: OB = OD (tính chất hình bình hành)
OE = 1/2 OD (gt)
OF = 1/2 OB (gt)
Suy ra: OE = OF
Xét tứ giác AECF, ta có:
OE = OF (chứng minh trên)
OA = OC (vì ABCD là hình bình hành)
Suy ra: Tứ giác AECF là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường ) ⇒ AE // CF
a) Ta có:OB=OD (tính chất hình bình hành)
OE=\(\frac{1}{2}\)OD (gt)
CF=\(\frac{1}{2}\)OB (gt)
=>OE=OF
Xét tứ giác AECF ta có:
OE=OF (cmt)
OA=OC (vì ABCD là hình bình hành)
=>Tứ giác AECF là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)
=>AE//CF
b) Kẻ OM//AK
Trong ▲CAK ta có:
OA=OC (cmt)
OM//AK (theo ta vẽ)
=>CM//MK (tính chất đường trung bình ▲) (1)
Trong ▲DMO ta có :
DE=EO (gt)
EK//OM
=>DK//KM (tính chất đường trung bình ▲) (2)
Từ (1) và (2)=> DK=KM=MC
=>DK=\(\frac{1}{2}\)KC
Tự vẽ hình nha
a) tam giác OEA = tam giác OFC (c-g-c)
=>A=C mà 2 góc này là SLT => AE//CF
b)Kẻ OK song song với CF hay EI
Vì DE=EO=OF ;EI//OK//FC
=> EI;OK;FC là 3 dường thẳng // cách đều
=> DI=IK=KC => dpcm
Tích nhé bạn
a: Xét tứ giác AECF có
O là trung điểm của AC
O là trung điểm của FE
Do đó: AECF là hình bình hành
Suy ra: AE//CF