K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2021

\(a,ĐK:x>0;x\ne4\\ E=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-2}{2}=\dfrac{\sqrt{x}-2}{2\sqrt{x}}\\ b,x=19-8\sqrt{3}=\left(4-\sqrt{3}\right)^2\\ \Leftrightarrow E=\dfrac{4-\sqrt{3}-2}{2\left(4-\sqrt{3}\right)}=\dfrac{\left(2-\sqrt{3}\right)\left(4+\sqrt{3}\right)}{26}=\dfrac{5-2\sqrt{3}}{26}\\ c,E=-1\Leftrightarrow\sqrt{x}-2=-2\sqrt{x}\\ \Leftrightarrow3\sqrt{x}=2\Leftrightarrow\sqrt{x}=\dfrac{2}{3}\Leftrightarrow x=\dfrac{4}{9}\left(tm\right)\\ d,E=\dfrac{1}{\sqrt{x}}\Leftrightarrow\dfrac{\sqrt{x}-2}{2}=1\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\left(tm\right)\)

\(e,E>0\Leftrightarrow\sqrt{x}-2>0\left(2\sqrt{x}>0\right)\Leftrightarrow x>4\\ f,E=\dfrac{\sqrt{x}-2}{2\sqrt{x}}=\dfrac{1}{2}-\dfrac{1}{\sqrt{x}}< \dfrac{1}{2}\left(-\dfrac{1}{\sqrt{x}}< 0\right)\\ g,\dfrac{1}{E}=\dfrac{2\sqrt{x}}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{x}-2\right)+4}{\sqrt{x}-2}\in Z\\ \Leftrightarrow\sqrt{x}-2\inƯ\left(4\right)=\left\{-1;0;1;2;4\right\}\left(\sqrt{x}-2>-2\right)\\ \Leftrightarrow\sqrt{x}\in\left\{1;2;3;4;6\right\}\\ \Leftrightarrow x\in\left\{1;9;16;36\right\}\left(x\ne4\right)\\ h,x>4\Leftrightarrow\sqrt{x}-2>0\\ \Leftrightarrow E=\dfrac{\sqrt{x}-2}{2\sqrt{x}}>0\Leftrightarrow E\ge\sqrt{E}\)

a: Ta có: \(E=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)

\(=\left(\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+4\sqrt{x}\right):\left(\dfrac{x-1}{\sqrt{x}}\right)\)

\(=\left(\dfrac{4\sqrt{x}+4\sqrt{x}\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{\sqrt{x}}{x-1}\)

\(=\dfrac{4x^2}{\left(x-1\right)^2}\)

b: Để E=2 thì \(4x^2=2\left(x-1\right)^2\)

\(\Leftrightarrow4x^2-2x^2+4x-2=0\)

\(\Leftrightarrow2x^2+4x-2=0\)

\(\Leftrightarrow x^2+2x-1=0\)

\(\Leftrightarrow\left(x+1\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{2}-1\\x=\sqrt{2}-1\end{matrix}\right.\)

c: Ta có: \(x=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)^2\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=2\)

Thay x=2 vào E, ta được:

\(E=\dfrac{4\cdot2^2}{1}=16\)

1 tháng 1 2022

a) Điều kiện: \(x\ge0;x\ne1;x\ne\dfrac{1}{4}\)\(E=\left(\dfrac{2x\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt[]{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(E=\left(\dfrac{2x\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right).\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(E=\dfrac{2x\sqrt{x}+x-\sqrt{x}-x\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(E=\dfrac{x\sqrt{x}-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(E=\dfrac{x\sqrt{x}-2\sqrt{x}}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(E=\dfrac{x\sqrt{x}-2\sqrt{x}+x\sqrt{x}+x+\sqrt{x}}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)

\(E=\dfrac{2x\sqrt{x}-\sqrt{x}+x}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)

\(E=\dfrac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)

\(E=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)

\(E=\dfrac{x+\sqrt{x}}{x+\sqrt{x}+1}\)

b)Vì \(x\ge0\) nên \(x+\sqrt{x}\ge0\) và \(x+\sqrt{x}+1>0\)

Do đó: \(E\ge0\). Dấu "=" xảy ra \(\Leftrightarrow x=0\)

c)\(E\ge\dfrac{6}{7}\Leftrightarrow\dfrac{x+\sqrt{x}}{x+\sqrt{x}+1}\ge\dfrac{6}{7}\Leftrightarrow7x+7\sqrt{x}\ge6x+6\sqrt{x}+6\)

                \(\Leftrightarrow x+\sqrt{x}-6\ge0\Leftrightarrow x-2\sqrt{x}+3\sqrt{x}-6\ge0\)

                 \(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\ge0\)

                  \(\Leftrightarrow\sqrt{x}-2\ge0\Leftrightarrow\sqrt{x}\ge2\Leftrightarrow x\ge4\)

7 tháng 10 2021

\(a,E=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\dfrac{x-1+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\left(x>0;x\ne1\right)\\ E=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}=\dfrac{x}{\sqrt{x}-1}\\ b,E>1\Leftrightarrow\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}>0\\ \Leftrightarrow\sqrt{x}-1>0\left[x-\sqrt{x}+1=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\right]\\ \Leftrightarrow x>1\left(tm\right)\)

\(c,E=\dfrac{x}{\sqrt{x}-1}=\dfrac{x-1+1}{\sqrt{x}-1}=\sqrt{x}+1+\dfrac{1}{\sqrt{x}-1}\\ E=\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+2\ge2\sqrt{\dfrac{\sqrt{x}-1}{\sqrt{x}-1}}+2=2+2=4\\ E_{min}=4\Leftrightarrow\sqrt{x}-1=1\Leftrightarrow x=4\)

18 tháng 10 2021

a. B = \(\dfrac{\sqrt{36}}{\sqrt{36}-3}=\dfrac{6}{6-3}=2\)

 

18 tháng 10 2021

a: Thay x=36 vào B, ta được:

\(B=\dfrac{6}{6-3}=\dfrac{6}{3}=2\)

14 tháng 10 2021

\(a,P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\left(x\ge0;x\ne1\right)\\ P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ b,P=-1\Leftrightarrow\sqrt{x}-1=-\sqrt{x}-1\\ \Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\\ c,P\in Z\Leftrightarrow\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\\ \Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{1;2\right\}\left(\sqrt{x}+1\ge1\right)\\ \Leftrightarrow\sqrt{x}=0\left(x\ne1\right)\\ \Leftrightarrow x=0\)

\(d,P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\left(\dfrac{2}{\sqrt{x}+1}>0\right)\\ e,P=1-\dfrac{2}{\sqrt{x}+1}\\ \sqrt{x}+1\ge1\Leftrightarrow-\dfrac{2}{\sqrt{x}+1}\ge-\dfrac{2}{1}=-2\\ \Leftrightarrow P=1-\dfrac{2}{\sqrt{x}+1}\ge1-\left(-2\right)=3\)

Dấu \("="\Leftrightarrow x=0\)

14 tháng 10 2021

a) ĐKXĐ: \(x\ge0,x\ne1\)

\(P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=-1\)

\(\Leftrightarrow-\sqrt{x}-1=\sqrt{x}-1\Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)

c) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\)

\(\Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Kết hợp đk:

\(\Leftrightarrow x\in\left\{0\right\}\)

d) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\)

e) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

Do \(\sqrt{x}+1\ge1\Leftrightarrow-\dfrac{2}{\sqrt{x}+1}\ge-2\)

\(\Leftrightarrow P=1-\dfrac{2}{\sqrt{x}+1}\ge1-2=-1\)

\(minP=-1\Leftrightarrow x=0\)