Cho ΔABC có AB = AC, gọi H là trung điểm của BC.
a) Chứng minh: ΔABH = ΔACH
b) Qua điểm C vẽ đường thẳng vuông góc với AC, đường thẳng này cắt tia AH tại K.
Chứng minh: ΔABK = ΔACK và AB BK.
c) Gọi D , F lần lượt là trung điểm AH và AC. Trên tia đối của tia DB lấy điểm E sao
cho DE = DB. Chứng minh: 3 điểm H, E, F thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔAHB=ΔAHC
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔAHB=ΔAHC
a) Vì H là trung điểm của BC(giả thiết)
\(\Rightarrow\)HB=HC
Xét tam giác ABH và tam giác ACH
AB=AC(giả thiết)
HB=HC(theo trên)
AH là cạnh chung
Dó đó: tam giác ABH= tam giác ACH(cạnh-cạnh-cạnh)(ĐPCM)
Mình rất xin lỗi khi chỉ giúp bạn được phần a)
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
DO đó: ΔAHB=ΔAHC
a, xét tam giác abm và tam giác amc có:
am chung
bm = mc(gt)
ab=ac(gt)
=> tam giác abm = tam giác amc (c.c.c)
vì 2 tam giác chứng minh trên:
suy ra góc amb = góc amc (cặp góc tương ứng)
ta có amb + amc =180( kề bù)
mà amb = amc(cmt)
=> amb =90 độ
=> am vuông góc mb
=> am vuông góc bc
b, xét tam giác hbm và tam giác hcm có:
bm =mc(gt)
bmh=cmh( vì 2 góc cm ở trên)
hm chung
=> 2 tam giác cần cm bằng nhau
vì tam giác hbm = tam giác hcm(cmt)
=> góc bhm = góc chm( cặp góc tương ứng)
=> hm là tia p/g của góc bhc
c,vì tam giác hbm = tam giác hcm(cmt)
=> hb=hc( cặp cạnh tương ứng)
xét tam giác abh và tam giác ach có:
ab =ac(gt)
ah chung
bh=hc(cmt)
=> tam giác abh = tam giác ach
còn cái ab vuông góc hb thì mình ko nhìn đc bạn nhé
chúc bạn học tốt
hình đây bạn nhé, nếu câu c phần cuối bạn đánh sai thì báo mình để mình làm nốt
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH