Chứng tỏ phân số \(\frac{3n-2}{4n-3}\) ( với n \(\in\) Z ) là phân số tối giản
GIÚP MIK NHA MIK TICK CHO BN NÀO LÀM ĐÚNG VÀ NHANH NHẤT
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(d=\left(n+1,3n+2\right)\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(2n+1,4n+3\right)\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Gọi d là ƯCLN của 3n+2 và 4n+3
Theo đề bài ta có:
\(\hept{\begin{cases}3n+2⋮d\\4n+3⋮d\end{cases}}=>\hept{\begin{cases}4\left(3n+2\right)⋮d\\3\left(4n+3\right)d\end{cases}}\)
\(=>4\left(3n+2\right)-3\left(4n+3\right)⋮d\)
\(=>12n+8-12n-9⋮d\)
\(=>1⋮d=>d=1\)
Vì d=1 nên \(ƯCLN\)\(\left(3n+2,4n+3\right)=1\)
Vậy \(\frac{3n+2}{4n+3}\) là phân số tối giản
k mik đi
Gọi ƯCLN \(\frac{3n+2}{4n+3}\)là d, ta có :
3n + 2 \(⋮\)d → 12n + 8 \(⋮\)d ( nhân 3n + 2 với 4 )
4n + 3 \(⋮\)d → 12n + 9 \(⋮\)d ( nhân 4n + 3 với 3 )
→ ( 12n + 9 ) - ( 12n + 8 ) \(⋮\)d
( 12 n - 12n ) + ( 9 - 8 ) \(⋮\)d
1 \(⋮\)d → d \(\in\)Ư ( 1 ) = 1. Vì các số tối giản có ước là 1 và chính nó.
Vậy ........................
a: Gọi a=UCLN(n+1;2n+3)
\(\Leftrightarrow2n+3-2\left(n+1\right)⋮a\)
\(\Leftrightarrow1⋮a\)
=>a=1
=>n+1/2n+3 là phân số tối giản
b: Gọi d=UCLN(2n+5;4n+8)
\(\Leftrightarrow4n+10-4n-8⋮d\)
\(\Leftrightarrow2⋮d\)
mà 2n+5 là số lẻ
nên n=1
=>2n+5/4n+8 là phân số tối giản
.
Không thể được đâu bạn ơi, giả sử như n = 2, thay vào phân số trên sẽ được kết quả là 8/9 >> không phải là phân số tối giản.
gọi ƯC( 3n+2 và 4n+1) là d
suy ra 3n+2 chia hết cho d và 4n+1 chia hết cho d
suy ra ( 3n+2) - ( 4n +1) chia hết cho d
4(3n+2) - 3(4n+1)chia hết d
12n+8- 12n-3 chia hết d
8-3 chia hết d
5 .............
Vì 3n+2vs 4n+1 là 2 số nguyên tố cung nhau
suy ra d=1
Vậy...............
Gọi d là ước chung lớn nhất của 3n+1 và 4n+1 (d thuộc N*)
Ta có : 3n+1 chia hết cho d
4n +1 chia hết cho d
==> (4n+1) - (3n+1) chia hết cho d
Hay: n chia hết cho d
==> 3n chia hết cho d
mà 3n+1 chia hết cho d (cmt)
==> (3n+1) - 3n chia hết cho d
Hay: 1 chia hết cho d
mà d thuộc N*
==> d = 1
==> 3n+1 và 4n+1 nguyên tố cùng nhau
==> 3n+1/4n+1 là phân số tối giản. (đpcm)
Gọi d là ƯCLN ( 3n + 1; 4n + 1 )
\(\Rightarrow\)\(3n+1⋮\)d \(\Rightarrow\)\(4.\left(3n+1\right)⋮\)d \(\left(1\right)\)
\(\Rightarrow4n+1⋮\)d \(\Rightarrow\)\(3.\left(4n+1\right)⋮\) d \(\Rightarrow\)\(12n+3⋮\)d \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\text{[}\left(12n+4\right)-\left(12n+3\right)\text{]}⋮\)d
\(\Rightarrow1⋮\)d \(\Rightarrow\)d = 1
Vì ƯCLN ( 3n + 1 ; 4n + 1 ) = 1 nên \(\frac{3n+1}{4n+1}\)là phân số tối giản
Từ 2x=3y=4z \(\Rightarrow\)\(\frac{x}{6}\)=\(\frac{y}{4}\)=\(\frac{z}{3}\) áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{x}{6}\) =\(\frac{y}{4}\)=\(\frac{z}{3}\)= \(\frac{y-x+z}{4-6+3}\)=\(\frac{2013}{1}\)= 2013
\(\Rightarrow\)x=2013.6=12078
\(\Rightarrow\)y= 2013.4=8052
\(\Rightarrow\)z=2013.3=6039
Vậy: x=12078
y=8052
z=6039
HOK TỐT!
@LOANPHAN.
gọi d là Ưc(3n+2; 5n+3)
\(\Leftrightarrow\)\(\frac{3n+2}{5n+3}\)=\(\frac{15n+10}{15n+9}\)
\(\Rightarrow\)d\(⋮\)1\(\Rightarrow\)d=1
vậy \(\frac{3n+2}{5n+3}\)tối giản với mọi số tự nhiên n
trong sách nâng cao và phát triển toán
đặt d là UCLN( 3n - 2;4n - 3)
=> 3n - 2 : d => 12n - 8