cho phân số A=n+1/n-2
a/ tìm n là số nguyên để phân số A có giá trị nguyên
b/ tìm n là số nguyên để phân số A có giá trị lớn nhất
Các bạn giúp mình vs!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) HS tự làm.
b) HS tự làm.
c) Phân số A có giá trị là số nguyên khi (n + 5):(n + 4) Từ đó suy ra l ⋮ (n + 4) hay n + 4 là ước của 1.
Do đó n ∈ (-5; -3).
a) Ta có:
Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4
b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)
+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)
Để A \(\in\)Z <=> 1 \(⋮\)n + 4
<=> n + 4 \(\in\)Ư(1) = {1; -1}
Lập bảng :
n + 4 | 1 | -1 |
n | -3 | -5 |
Vậy ....
1a) Để A là phân số thì n \(\ne\)- 4 ; n
b) + Khi n = 1
=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)
+ Khi n = -1
=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Để \(A\inℤ\)
=> \(n+5⋮n+4\)
=> \(n+4+1⋮n+4\)
Ta có : Vì \(n+4⋮n+4\)
=> \(1⋮n+4\)
=> \(n+4\inƯ\left(1\right)\)
=> \(n+4\in\left\{\pm1\right\}\)
Lập bảng xét các trường hợp
\(n+4\) | \(1\) | \(-1\) |
\(n\) | \(-3\) | \(-5\) |
Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)
a) n thuộc Z
b) Vì 1/2 ko thc Z mà n thc Z => ko có gtrị nao của n thc Z để A là số nguyên
a) -Để B là phân số thì: \(n-4\ne0\Rightarrow n\ne4\) (thỏa mãn n là số nguyên).
b) -Để B là số nguyên thì: \(n⋮\left(n-4\right)\)
=>\(\left(n-4+4\right)⋮\left(n-4\right)\)
=>\(4⋮\left(n-4\right)\)
=>\(n-4\inƯ\left(4\right)\)
=>\(n-4\in\left\{1;-1;4;-4\right\}\)
=>\(n\in\left\{5;3;8;0\right\}\) (đều thỏa mãn điều kiện n nguyên và \(n\ne4\)).