Cho (O) và một điểm M nằm ngoài đường tròn. Từ M kẻ 2 tiếp tuyến MA,MB với đường tròn (O) (A và B là 2 tiếp điểm). Gọi I là giao điểm của OM và AB. Kẻ đường kính BC của đường tròn (O).
a,C/m 4 điểm M,A,O,B cùng thuộc một đường tròn.
b,C/m OI.OM=OA2
c,Qua O vẽ đường thẳng vuông góc với MC tại E và cắt đường thẳng BA tại F. C/m FC là tiếp tuyến của đường tròn (O)
a: Xét tứ giác MAOB có
\(\widehat{OAM}+\widehat{OBM}=180^0\)
Do đó: MAOB là tứ giác nội tiếp
a) Ta có
MAMA là tiếp tuyến của đường tròn (gt)
⇒⇒ MA⊥OAMA⊥OA => ˆMAO=90°MAO^=90°
MBMB là tiếp tuyến của đường tròn (gt)
⇒⇒ MB⊥OBMB⊥OB => ˆMBO=90°MBO^=90°
Xét tứ giác MAOBMAOB có ˆMAO+ˆMBO=180°MAO^+MBO^=180° mà chúng ở vị trí đối nhau
⇒⇒ tứ giác MAOBMAOB là tứ giác nội tiếp
⇒⇒ M,A,O,BM,A,O,B cùng thuộc 11 đường tròn
b) Ta có MA,MBMA,MB là 2 tiếp tuyến cắt nhau tại MM
⇒⇒ MA=MBMA=MB ⇒⇒ MOMO là tia phân giác ˆAMBAMB^
Xét ΔAMI∆AMI và ΔBMI∆BMI
Có MA=MBMA=MB (cmt)
ˆAMI=ˆBMIAMI^=BMI^ (cmt)
MIMI chung => ΔAMI=ΔBMI∆AMI=∆BMI (c.g.c)
⇒⇒ ˆAIM=ˆBIMAIM^=BIM^
Mà ˆAIM+ˆBIM=180°AIM^+BIM^=180° (kề bù)
⇒⇒ ˆAIM=180°2=90°AIM^=180°2=90°
⇒⇒ MO⊥ABMO⊥AB tại II
c) Ta có: ˆBDC=90°BDC^=90°(Góc nội tiếp chắn đường kính BCBC)
⇒⇒ ΔBDC∆BDC vuông tại D⇒BD⊥CDD⇒BD⊥CD
ΔBCM⊥BΔBCM⊥B (do BMBM là tiếp tuyến của (O))
Hệ thức lượng vào ΔBCM⊥B,BD⊥CDΔBCM⊥B,BD⊥CD (chứng minh trên) ta có:
BM2=MD.MCBM2=MD.MC (1)
Xét ΔMAO∆MAO vuông tại A
AI⊥OMAI⊥OM (Vì AB⊥OMAB⊥OM) ⇒⇒ AM2=MI.MOAM2=MI.MO (2)
mà AM=BMAM=BM (tính chất hai tiếp tuyến cắt nhau) (3)
Từ (1), (2) và (3) ⇒⇒ MD.MC=MA2=MI.MOMD.MC=MA2=MI.MO
d) Xét ΔEOM∆EOM cà ΔIOF∆IOF
ˆEOMEOM^ chung
ˆOIF=ˆOEM=90°OIF^=OEM^=90° (gt &cm)
⇒⇒ ΔEOM∼ΔIOF∆EOM∼∆IOF (g.g)
⇒⇒ OEOI=OMOFOEOI=OMOF (tỉ số đồng dạng)
⇒⇒ OE.OF=OM.OIOE.OF=OM.OI
Lại có ΔOAM∆OAM vuông tại AA
Mà AI⊥OMAI⊥OM (cmt)
⇒⇒ OA2=OI.OMOA2=OI.OM Mà OA=OC=ROA=OC=R
⇒⇒ OC2=OF.OEOC2=OF.OE
⇒⇒ OCOE=OFOCOCOE=OFOC
Xét ΔOCF∆OCF và ΔOCE∆OCE có
ˆCOFCOF^ chung
OCOE=OFOCOCOE=OFOC
⇒⇒ ΔOCF∼ΔOEC∆OCF∼∆OEC (c.g.c)(c.g.c)
⇒⇒ ˆOFC=ˆOCE=90°OFC^=OCE^=90°
⇒⇒ OC⊥CFOC⊥CF tại C
⇒⇒ FCFC là tiếp tuyến của đường tròn
(ĐPCM)