K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giả sử tồn tại các số nguyên a,b,c thỏa mãn đề bài

Ta có:\(\hept{\begin{cases}f\left(1998\right)=1998^2a+1998b+c=1\\f\left(2000\right)=2000^2a+2000b+c=2\end{cases}}\)

\(\Rightarrow f\left(2000\right)-f\left(1998\right)=\left(2000^2a+2000b+c\right)-\left(1998^2a+1998b+c\right)=2-1\)

\(\Leftrightarrow\left(2000^2-1998^2\right)a+2b=1\)

Ta thấy 1 là số lẻ mà 2b và (2000^2-1998^2)a là số chẵn nên 2b+(2000^2-1998^2)a là số chắn(Vô lý)

Vậy ko tồn tại các số nguyên a,b,c thỏa mãn đề bài(đpcm)

5 tháng 8 2020

Cảm ơn bạn Tuấn Anh

16 tháng 1 2016

Toan lop 7 ma sao kho the?!!!!! Minh bo tay!

19 tháng 3 2018

Ko trả lời khôn thế bài tu làm mà còn đi hỏi 

19 tháng 3 2018

Tôi làm đc rồi

10 tháng 4 2018

cho f(x) = ax3 + bx2+c+d (a,b,c,d thuoc z) va thoa man b= 3a+c

cmr: f(1) , f(-2) la binh phuong mot so nguyen 

cau hoi vay ai tra loi giup minh voi

20 tháng 4 2018

   \(f\left(1\right)=a.1^3+b.1^2+c.1+d\)

             \(=a+b+c+d\)

             \(=a+3a+c+c+d\)

             \(=4a+2c+d\)

\(f\left(-2\right)=a.\left(-2\right)^3+b.\left(-2\right)^2+c.\left(-2\right)+d\)

              \(=-8a+4b-2c+d\)

              \(=-8a+4\left(3a+c\right)-2c+d\)

              \(=-8a+12a+4c-2c+d\)

              \(=4a+2c+d\)

\(\text{Có : }f\left(1\right).f\left(-2\right)=\left(4a+2c+d\right).\left(4a+2c+d\right)\)

                                 \(=\left(4a+2c+d\right)^2\)

\(\text{Vậy ..................................(đpcm)}\)