Tìm số cạnh của một đa giác biết số đường chéo hơn số cạnh là 42
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
Số đường chéo của đa giác \(n\left(n-3\right):2\)
Có:
\(n\left(n-3\right):2=n+42\)
\(n\left(n-3\right)=2n+84\)
\(n^2-5n=84\)
\(n^2-2.2,5+\left(2,5\right)^2=84+\left(2,5\right)^2\)
\(\left(n-2,5\right)^2=90,25\)
\(\Rightarrow n-2,5=9,5\left(n>0\right)\)
\(\Rightarrow n=12\)
Vậy đa giác có tổng cộng là 12 cạnh
anh ơi anh giúp em bài TA đi rồi e giúp anh cho , e biết làm
Ta có cách tính cạnh của một đa giác là :
\(\dfrac{\left(a-3\right).a}{2}\),trong đó a là số đỉnh \(\Rightarrow\) đa giác có a cạnh
\(\Rightarrow\dfrac{\left(a-3\right).a}{2}-a=7\Leftrightarrow\dfrac{a^2-3a-2a}{2}=7\\ \Rightarrow a^2-5a=14\)
\(\Rightarrow a\left(a-5\right)=14.\)
Vì a là số cạnh nên a>1 và a>a-5
\(\Rightarrow a\left(a-5\right)=2.7\Rightarrow\)\(\left\{{}\begin{matrix}a=7\\\\a-5=2\end{matrix}\right.\)\(\Rightarrow a=7\)
Vậy đa giác có 7 cạnh
Gọi số cạnh của đa giác là 10 + k( \(k\in\)N* )
\(\Rightarrow\frac{\left(10+k\right)\left(10+k+3\right)}{2}< 60\)
\(\Rightarrow\frac{\left(10+k\right)\left(13+k\right)}{2}< 60\)
\(\Rightarrow\frac{130+10k+13k+k^2}{2}< 60\)
\(\Rightarrow\frac{130+23k+k^2}{2}< 60\)
\(\Rightarrow130+23k+k^2< 120\)
\(\Rightarrow k^2+2.k.\frac{23}{2}+\frac{23^2}{2^2}+\frac{1551}{16}< 120\)
\(\Rightarrow\left(k+11,5\right)^2< \frac{369}{16}< \frac{400}{16}\)
\(\Rightarrow\left(k+11,5\right)^2< 5^2\) (1)
Mà \(k\in\)N*
=> k+11 , 5 > 11,5 > 5
\(\Rightarrow\left(k+11,5\right)^2>5^2\) (2)
So sánh (1) và (2)
=> Mâu thuẫn .
Vậy không có đa giác cần tìm .
a) Tính số đường chéo của đa giác có 24 cạnh
b) Tính số cạnh của đa giác biết đường chéo là 170 đường
a) \(\frac{\left(24-3\right).24}{2}=252\)đường chéo
b) \(\left(n-3\right).n=340\)
\(n^2-3n=340\)
\(n^2-3n-340=0\)
\(n^2-20n+17n-340=0\)
\(n\left(n-20\right)+17\left(n-20\right)\)
\(\left(n+17\right)\left(n-20\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}n+17=0\\n-20=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=-17\\n=20\end{cases}}\)
n = -17 ( loại )
n = 20 ( nhận )
Vậy n = 20 hay số cạnh của đa giác là 20
1 Đa giác có n cạnh có :
- Số đường chéo từ 1 đỉnh là : (n - 3)
- Số đỉnh là n
Do 1 đường chéo nối 2 đỉnh
=> 1 Đa giác có n cạnh có n(n - 3)/2 đường chéo
biết tổng số đường chéo là 170
=> n(n - 3)/2 = 170
=> n² - 3n - 340 = 0
∆ = (-3)² - 4.(-340) = 1369
=> √∆ = 37
=> n = ... (tự giải)